
© A4Q Copyright 2022 Version 1.0

Foundation Level Tester for Appium
Syllabus

Release – Version 1.0

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 1 of 65 Version 1.0

Copyright Notice

All contents of this work, in particular texts and graphics, are protected by copyright. The use and exploitation of
the work is exclusively the responsibility of the A4Q.

In particular, the copying or duplication of the work but also parts of this work is prohibited.

The A4Q reserves civil and penal consequences in case of infringement.

A4Q does not own the Appium® trademark. Appium® is a registered trademark of the OpenJS Foundation.

Revision History

Version Date Remark

0.1 13.11.2020 Initial Writing

A0.1 – A0.10 13.11.2021 Rework after review with external customers, Appium® 2.0

A.011RC 20.02.2022 Review RC

1.0A 18.03.2022 Release 1.0A

1.0 28.07.2022 Changed the exam duration
Added the student’s prerequisites

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 2 of 65 Version 1.0

Table of Contents

COPYRIGHT NOTICE ... 1

TABLE OF CONTENTS ... 2

TABLE OF FIGURES ... 4

0 INTRODUCTION .. 5

0.1 PURPOSE OF THIS SYLLABUS ... 5
0.2 EXAMINABLE LEARNING OBJECTIVES AND COGNITIVE LEVELS OF KNOWLEDGE .. 5
0.3 THE A4Q FOUNDATION LEVEL TESTER FOR APPIUM EXAM .. 5
0.4 ACCREDITATION ... 6
0.5 LEVEL OF DETAIL .. 6
0.6 HOW THIS SYLLABUS IS ORGANIZED ... 6
0.7 BUSINESS CONTEXT .. 7
0.8 BUSINESS OUTCOMES (BO) ... 7
0.9 PREREQUISITE KNOWLEDGE ... 7
0.10 SYSTEM PREREQUISITE .. 8
0.11 ACRONYMS ... 8
0.12 DEFINITIONS ... 9

1 INTRODUCTION TO MOBILE APPLICATION TESTING .. 10

1.1 TEST AUTOMATION OVERVIEW ... 10
1.1.1 WHY TESTING IS NECESSARY ... 10
1.1.2 MANUAL TESTING .. 11
1.1.3 AUTOMATED TESTING ... 12
1.2 INTRODUCTION TO MOBILE APPLICATION TESTING ... 13
1.2.1 ADVANTAGES OF MOBILE TESTING AUTOMATION .. 13
1.2.2 SOME IDEAS TO CREATE GOOD, AUTOMATED TEST CASES ... 14
1.2.3 DIFFERENCES BETWEEN MANUAL AND AUTOMATED TEST .. 15
1.3 MANUAL VS. AUTOMATED TESTS .. 16
1.4 SUCCESS FACTORS OF AUTOMATED TEST CASES ... 17
1.5 TYPES OF AUTOMATED TEST CASES (SOME IDEAS) ... 18
1.6 TEST REPORTS BY TEST AUTOMATION ... 19

2 APPIUM® INTRODUCTION ... 20

2.1 WHAT IS APPIUM® ... 20
2.2 APPIUM® PHILOSOPHY .. 21
2.2.1 WHAT APPIUM® IS? ... 21
2.3 WHY USING APPIUM® IS A GOOD CHOICE ... 21
2.4 APPIUM® ARCHITECTURE ... 22
2.5 EMULATOR VS. SIMULATOR VS. REAL DEVICES ... 23
2.6 APPIUM® STANDARD REPOSITORY ... 24

3 APPIUM® - INSTALLATION AND SETUP .. 25

3.1 INSTALLING APPIUM® .. 25
3.1.1 PREREQUISITES .. 25
3.2 INSTALL APPIUM® ON WINDOWS SYSTEM .. 26
3.2.1 INSTALLATION OF ALL NECESSARY COMPONENTS AND TOOLS ... 26

3.2.1.1 Part-1: Installation and Java Setup... 26
3.2.1.2 Part-2: Android Studio Installation and Setup ... 27

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 3 of 65 Version 1.0

3.2.1.3 Part-3: Appium® tool setup ... 28
3.3 INSTALL APPIUM® ON MAC SYSTEM .. 29
3.3.1 INSTALLATION OF ALL NECESSARY COMPONENTS AND TOOLS ... 29

3.3.1.1 Part-1: Installation and Java Setup... 29
3.3.1.2 Part-2: Installation of XCode and Homebrew .. 30

4 USING APPIUM® .. 31

4.1 MAIN PRE-REQUISITES .. 31
4.1.1 TYPICAL TEST SCRIPT STRUCTURE ... 32
4.2 WRITING A TEST PROCEDURE ON APPIUM® 1.X .. 33
4.2.1 WRITING A TEST PROCEDURE FOR APP (EXPLANATION OF BODY) .. 33
4.2.2 WRITING A TEST PROCEDURE FOR ANDROID APP (EXAMPLE-1) ... 36
4.2.3 WRITING A TEST PROCEDURE FOR IOS APP (EXAMPLE-2) ... 37
4.2.4 HOW TO CREATE A TEST SCRIPT - STEP BY STEP : EXAMPLE 3 ... 38

4.2.4.1 Start the Appium® application.. 38
4.2.4.2 Start Android Studio. ... 39
4.2.4.3 Start the device using the “green run” action button. ... 39

4.3 EXECUTING A TEST PROCEDURE ON REAL DEVICE ... 42
4.4 SYNC (WAIT MECHANISMS) ... 43
4.5 LOGGING MECHANISM ... 44
4.6 MAINTAINABILITY OF TEST SCRIPTS .. 45
4.6.1 DON’T REPEAT YOURSELF (DRY) .. 45
4.6.2 SINGLE RESPONSIBILITY PRINCIPLE (SRP) ... 46
4.6.3 PAGE OBJECT PATTERN (POP) ... 46
4.6.4 DESCRIPTIVE AND MEANINGFUL PHRASES (DAMP) ... 46
4.6.5 SOLID PRINCIPLE ... 46

5 LIST OF SYSTEM CAPABILITIES ... 47

5.1 SERVER CAPABILITIES .. 47
5.2 COMMON CAPABILITIES TO ALL OS ... 48
5.3 ANDROID SPECIFIC CAPABILITIES ... 50
5.4 IOS SPECIFIC CAPABILITIES ... 52

6 APPIUM® 2.0 ... 53

6.1 OVERVIEW ON APPIUM® 2.0 .. 53
6.2 STARTING APPIUM® 2.0: WHAT HAS CHANGED... 54
6.3 STARTING APPIUM® 2.0: AN EXAMPLE .. 56

7 BIBLIOGRAPHY .. 58

8 APPENDIX A – LEARNING OBJECTIVES/COGNITIVE LEVEL OF KNOWLEDGE ... 59

LEVEL 1: REMEMBER (K1) ... 59
LEVEL 2: UNDERSTAND (K2) .. 59
LEVEL 3: APPLY (K3) .. 59
LEVEL 4: ANALYZE (K4) .. 59

9 APPENDIX B – GLOSSARY OF APPIUM® TERMS ... 60

10 APPENDIX C – SOURCES .. 61

11 APPENDIX D – SOURCE EXAMPLE EDITOR-APK ... 62

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 4 of 65 Version 1.0

Table of Figures

Figure 1 : Test execution report (Example) ... 16

Figure 2 : Test environment (full test environment) .. 22

Figure 3 : Java jdk Installation and Setup .. 26

Figure 4 : Appium® Installation and Setup .. 28

Figure 5 : Check for real device connection (adb command) ... 43

Figure 6 : UIAutomator2 ... 57

This document was formally released by A4Q on 28th July 2022.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 5 of 65 Version 1.0

0 Introduction

0.1 Purpose of this Syllabus

This syllabus presents the business outcomes, learning objectives, and concepts underlying the A4Q Foundation
Level Tester for Appium certification and training.

This syllabus is aimed at developers and testers or anyone who want to learn mobile automation techniques using
Appium®.

0.2 Examinable Learning Objectives and Cognitive Levels of knowledge

Learning objectives support the business outcomes and are used to create the A4Q Foundation Level Tester for
Appium exams.

In general, all contents of this syllabus are examinable at K1, K2, K3, K4 levels. That is, the candidate may be asked
to recognize, remember, or recall a keyword or concept mentioned in any of the next chapters. The knowledge
levels of the specific learning objectives are shown at the beginning of each chapter, and classified as follows:

- K1: remember
- K2: understand
- K3: apply
- K4: analyze

Please check Appendix A – Learning Objectives/Cognitive Level of Knowledge for detailed information.

0.3 The A4Q Foundation Level Tester for Appium Exam

The A4Q Foundation Level Tester for Appium exam will be based on this syllabus. Answers to the exam questions
may require the use of material based on more than one section of this syllabus. All sections of the syllabus are
examinable, except for the Introduction and Appendices.

Standards, books, and ISTQB® syllabi may be included as references in the A4Q Foundation Level Tester for Appium
syllabus, but their content is not examinable, beyond what is summarized in this syllabus itself from such standards,
books, and ISTQB® syllabi.

The exam is comprised of 40 multiple-choice questions. Each correct answer has a value of one point in accordance
with the “A4Q Foundation Level Tester for Appium Exam Structure and Rules“ document.

A score of at least 65% (26 points) is required to pass the exam and be certified.

The time allowed to take the exam is 60 minutes. If the candidate’s native language is not the same as the
examination language, the candidate may be allowed an extra 25% time.

Participation in an A4Q Foundation Level Tester for Appium training course with an accredited training provider is
highly recommended but not compulsory. An accredited training provider will add additional information from the
official accredited course materials, including in-class exercises, with, among other things, demonstrations of
possible errors and solutions. Accredited training providers will also provide the “Student Exercise” document which
will support student learning.

The examination can also be taken without having participated in the A4Q Foundation Level Tester for Appium
training course where candidates choose to self-study.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 6 of 65 Version 1.0

0.4 Accreditation

Contact A4Q or A4Q authorized exam providers.

0.5 Level of Detail

The level of detail in this syllabus allows internationally consistent exams. To achieve this goal, the syllabus consists
of:

- General instructional objectives describing the intention of the Foundation Level
- A list of terms that students must be able to recall
- Learning objectives for each knowledge area, describing the cognitive learning outcome to be achieved
- A description of the key concepts, including references to sources such as accepted literature or standards

The syllabus content is not a description of the entire knowledge area of Appium® automated testing.

It focuses on test concepts and techniques that can apply to all software projects, including agile projects.

This syllabus does not contain any specific learning objectives related to any software development lifecycle or
method, but it does discuss how these concepts may apply in various software development lifecycles.

0.6 How this Syllabus is Organized

There are 5 chapters with examinable content.

The top-level heading for each chapter specifies the time for the chapter; timing is not provided below chapter level.
For the A4Q Foundation Level Tester for Appium training course, the syllabus requires a minimum of 12 hours of
instruction, distributed across the chapters as follows:

- Chapter 0: Introduction (Information about this Syllabus)
- Chapter 1: Introduction to Mobile Application Testing 220 minutes
- Chapter 2: APPIUM® Introduction 260 minutes
- Chapter 3: APPIUM® - Installation and Setup 110 minutes
- Chapter 4: Using Appium® 335 minutes
- Chapter 5: List of system Capabilities 85 minutes
- Chapter 6: Appium® 2.0 75 minutes
- Chapter 7: Bibliography
- Appendix A – Learning Objectives/Cognitive Level of Knowledge
- Appendix B – Glossary of Appium® Terms
- Appendix C – Sources
- Appendix D – Source Example Editor-APK

given the following average time duration to cover each learning objective (LO):

- K1: 10 minutes
- K2: 25 minutes
- K3: 60 minutes
- K4: 75 minutes

Together with theory explanation of this syllabus, several practical tests or exercises will be shown and asked to the
students to actively participate. It will bring the total training time duration to approx. 24-27 hours.

The given duration for each chapter is based on Kn (see Appendix A – Learning Objectives/Cognitive Level of
Knowledge for detailed information), however some activities can take longer or can be completed faster.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 7 of 65 Version 1.0

0.7 Business Context

Organizations are striving to improve their business agility to provide valuable products and services in a world that
is changing faster and faster due to digitalization. One important mechanism is to change the culture and mindset
of the organization using a variety of principles, frameworks, disciplines and methodologies, such as Agile, Lean, and
DevOps, which we have chosen to cover with the term Business Agility.

With Business Agility there is an even greater need for quality and testing as it is a prerequisite to reach and sustain
a high level of speed and agility. However, at the same time roles such as test manager, test coordinator, QA
Engineer and Tester are changing as organizations focus on having the necessary skills and competencies throughout
the organization rather than having dedicated functional roles.

At the same time there is a change away from management roles towards self-empowered teams and supporting
leadership. Therefore, classic roles like project managers and test managers struggle to find their place in
organization moving towards Business Agility.

However, the need for quality management remains even if companies organize themselves differently, use
different methods and increasingly automate processes. Testing professionals in Agile organizations need to
understand and support agile principles, methodologies, and processes.

Testers need to learn to use technical aspects such as model-based testing, test automation and test techniques as
well as organizational aspects such as value streams, quality management systems, and scaling with multiple agile
teams. They also need to gain more soft skills such as training, facilitation, and quality coaching.

0.8 Business Outcomes (BO)

The business outcome describes the benefit that a certified person should be able to deliver using the knowledge
and competencies covered in the syllabus. The knowledge and competencies are described in the learning objectives
(LO) for each chapter.

- ATF-BO-1 Understand the importance of test automation in Mobile devices
- ATF-BO-2 Correctly apply test automation principles to build maintainable test automation solution
- ATF-BO-3 Be able to implement Appium® scripts that execute functional mobile application tests
- ATF-BO-4 Be able to implement maintainable scripts

Every chapter contains LOs (Learning objectives) e.g., ATF-1.1 and references to the student exercise document,
e.g., ATF-H-01 used in accredited training. The references to the training exercise document are not given on the
same level of LOs but indicated at the end of the list.

0.9 Prerequisite Knowledge

Candidates for the A4Q Foundation Level Tester for Appium certification should have at least:

- Testing approach knowledge (especially test automation)
- Software programming knowledge. This syllabus uses Java for the examples and therefore Java knowledge

is recommended
- Admin knowledge for either Windows or iOS based computers, necessary to install tools and possibly trouble

shooting

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 8 of 65 Version 1.0

0.10 System Prerequisite

During the training and specifically exercises, some time will be dedicated to e.g., learn how to install the complete
environment and some indications about possible failures and how to solve them. However, to save time it is
suggested to the student that they install the environment on his machine before the training session will start. This
is not a must, but it will save some time to be invested more in the training and exercises.

0.11 Acronyms

Acronym Meaning

Adb Android Debug Bridge

AKA Also Known As

API Application Programming Interface

AVD Android Virtual Device

Bug “defect” : an Imperfection or deficiency in a work product where it does not
meet the requirements or specification (https://Glossary.istqb.org)

cfr Check For Reference

CI Continuous Integration

Cmd Command line (e.g., DOS window)

CSS Cascading Style Sheets

DDT Data Driven Testing

DOM Document Object Model

DRY Don’t Repeat Yourself

FW Framework

GUI Graphical User Interface (same as UI)

HTTP Hyper Text Transfer Protocol

ISTQB® International Software Testing Qualifications Board

KDT Keyword Driven Testing

LO Learning Objective

OSC Operating Sequence Controller

PD Person’s day / Persons’ days

POP Page Object Pattern

REST Representational State Transfer

ROI Return on Investment (win/win situation)

SDLC Software Development Life Cycle

SOAP Simple Object Access Protocol

SUT System Under Test

SRP Single Responsibility Principle

Session-ID Channel to exchange data between client and server

SiT System Integration Test

ST System Test

TAA Test Automation Architecture

TCP Transmission Control Protocol

UAT User Acceptance Test

UT Unit Test

UI User Interface (same as GUI)

W3C World Wide Web consortium

https://glossary.istqb.org/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 9 of 65 Version 1.0

0.12 Definitions

Definition Explanation (from ISTQB® glossary)

Unit / Component Testing A test level that focuses on individual hardware or software components

White box testing Testing based on an analysis of the internal structure of the component or
system

Black box testing A test technique based on an analysis of the specification of a component or
system

System Integration Testing A test level that focuses on interactions between systems

System Testing A test level that focuses on verifying that a system as a whole meets specified
requirements.

GUI testing Testing performed by interacting with the software under test via the graphical
user interface.

Test automation The use of software to perform or support test activities.

Test automation solution /
plan

A realization/implementation of a test automation architecture, i.e., a
combination of components implementing a specific test automation
assignment. The components may include commercial off-the-shelf test tools,
test automation frameworks, as well as test hardware

Test manual Testing performed by human (tester) without any support from software or
special tool to perform (repetitive) actions fast and without intervention.

Defect an Imperfection or deficiency in a work product where it does not meet the
requirements or specification (https://Glossary.istqb.org)

https://glossary.istqb.org/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 10 of 65 Version 1.0

1 Introduction to Mobile Application Testing

Timing 8*K2, 2*K1 = 220 minutes

Terms Testing, test automation, manual testing, mobile test automation, roi

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-1.1.1 (K1) Why testing is necessary
ATF-1.1.2 (K1) Manual Testing
ATF-1.1.3 (K2) Automated testing
ATF-1.2.1 (K2) Advantages of Mobile Testing Automation
ATF-1.2.2 (K2) Some ideas to create good, automated test cases
ATF-1.2.3 (K2) Differences between Manual and Automated Test
ATF-1.3 (K2) Manual vs. Automated Tests
ATF-1.4 (K2) Success Factors of Automated test cases
ATF-1.5 (K2) Types of Automated test cases (some ideas)
ATF-1.6 (K2) Test reports by Test automation

1.1 Test Automation Overview

Since the first piece of software was created, some “control” to confirm “it does what it is foreseen to do” has been
performed, by the developer themselves and later by the final users.

As time has gone by, testing has become more and more important, and today, there is no application, which can
go live, without a series of different tests: Unit Test, System Integration Test, System Test, User Acceptance Test,
Load & Performance Test, Stress Test, Penetration Test, Security Test, etc.

The tests are usually performed on a test environment and rarely or only during the last phase of User Acceptance
Test (UAT) on a real physical system.

Most of the above-described test types are covered by ISTQB® Syllabi (www.ISTQB.org).

The rest of Chapter 1 will give enough information about test types, as e.g., manual, automation testing or Unit
testing, System testing etc., so that you do not need to search information in ISTQB® syllabi or glossary.

Please refer to chapter 0.12 “Definitions”.

1.1.1 Why testing is necessary

Testing became more and more interesting and for several years it has been seen as essential to a successful product
launch.

By the different phases of testing, different types of defects can be detected.

As an example, during the Unit test, wrong implementation of requirements or wrong programming would be
detected (somehow “white-box” test), whilst in System Test the End-to-end test will be performed (somehow
“black-box” test) and not all programming errors will be detected.

http://www.istqb.org/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 11 of 65 Version 1.0

A test is necessary to detect as much as possible and as early as possible any defect which would bring the
application to an erroneous behavior with consequent e.g., application crash or loss of data.

An early defect detection during integration test phases, will be much cheaper to fix rather than when the
application is installed e.g., on hundreds of devices, and the whole process (defect fixing, regression test, System
Acceptance Test, application Launch, Release Notes, etc.) needs to be planned.

1.1.2 Manual Testing

Manual testing is a process, where the software tests are performed manually by a human tester. Analysis and
evaluation of the applications’ functionality, security, usability, performances are done by mean of a user in an
explorative process. This ensures that the application responds to user-friendliness. This type of testing is highly
time consuming as execution can take sometimes, and defects tend to take time to get recognized. Therefore, as a
rule of thumb, a maximum of 15-20% of an application’s testing, should be performed manually, whilst the rest
should be automated. On a mobile application the automated part can reach up to 95%.

Note: 80-85% of automated test scripts, is generally accepted as a good goal, however the percentage can differ depending on
several factors.

The fastest way to perform a test can be synthesized as:

- Definition of test scenario
- Creation of test data
- Perform the test
- Create a report with evidence of performed tests

On a GUI based system

- prepare set of test data: feed the test data in a structured file or file such as spreadsheets
- go through the menus (if the application is GUI oriented)
- enter the data and check the results if they met with the expected one
- create a report

On Embedded environments (e.g., generation of a digital signal through an interface)

- prepare set of test data: fill in predefined test data in a file such as excel or word documents (e.g., Voltage,
Current to be entered, measured)

- go through the different circuits (points of measurement)
- given the e.g., input Voltage, check if the measured value is correct
- Enable/disable some switches and perform same measurements
- create a report

On a Mobile Device

- define the test scenario
- prepare set of test data
- download the application to be tested to a physical device on an emulator or simulator
- execute test cases
- create report

As you can see, although different type of environment will be tested, the main tasks are the same

- Identify test scenario
- Prepare set of test data
- Execute test cases
- Create report

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 12 of 65 Version 1.0

In case of small application with few check points to be tested (e.g., few menus on GUI) and assuming a test phase
to be performed on monthly basis with an effort of say, 2 days, then a manual test could still be a good and cheap
solution.

1.1.3 Automated testing

Automated testing is a very important approach to mobile application testing. In this process, a set of test cases are
set up which should generally cover 80-85% and more of the testing process.

The percentage is a general guideline followed in the software industry. Here is a list of test cases that are generally
performed through this approach.

- Automate test cases that can be automated.
- Automate test cases for most frequently used functionality.
- Automate test cases to be executed on daily (new build) basis.
- Automate most tedious manual test cases.
- Automate test cases that are highly time consuming or even impossible to perform manually.
- Automate test cases with predictable results.

We have several systems to be tested, following the examples from the previous chapter

In a GUI based system

- Fill in predefined test data in a database or in a flat file such as excel or word documents
- Go through the GUI menus (e.g., 50 different pages)
- Enter the data and check the results if they met with the expected one
- Create a report

On a Mobile Device

- Define the test scenario (application to be tested, environment to be tested, etc.)
- Prepare set of data
- Download the application to be tested on the device (is the test will be executed on real device)
- Download the application on an emulator (usually a virtual device which act as a real one)
- Check for all menu entries, application behaviors under different environmental setup, modified in setup

mode outside the application
- Create reports

As you can see, different type of environment will be tested, the main tasks are the same

- Identify test scenario
- Prepare test data
- Execute test cases
- Create report

The main differences between manual and automatic test execution for the above example, can be summarized as

- The number of test cases executed for the same lapse of time is higher using automation tools compared to
manual execution.

- Automated tests have a high degree of repeatability. This implies that the same automated test will be done
exactly way each time it is executed, and the same exact execution steps can be extended to a range of
operating systems and devices. The same is however not true for manual tests as executions steps and speed
vary from person to person.

Here it is visible that scenario and test data preparation after the first creation are NOT being changed often, test
data could be almost the same, but the test execution of same test cases set on several devices with each different
setup (environmental setup), makes the difference between manual and automated test execution.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 13 of 65 Version 1.0

Given the following example:

- 50 test cases to be executed for a given application on a given device
- test cases execution duration for manual test 2 Days (PD)
- test cases execution for automated test 0.3 Days (PD)
- 8 different Test environment (devices) (we can assume also same device with different setup)

We see that test automation will save approx. 15 days of execution for a set of tests for a release

Getting a new application to be tested on monthly basis, the Return of Investment (ROI) is immediately visible

Note: The time spent to automat and maintenance is not taken in consideration in the example.

1.2 Introduction to Mobile Application Testing

For mobile device we intend all devices which can be connected via cable to a server or other system, or be able to
work alone, i.e., connected to a server via WiFi (wireless).

A mobile application needs to be tested and the Mobile Testing is the process to go through all checks.

The goals are to ensure that the expected functionalities work as defined in the Acceptance criteria.

Mobile applications have an extremely short time to deliver therefore it is extremely important to have a core of
test cases (scripts) to be performed as much as possible, automatically and for a minimal percent manually.

1.2.1 Advantages of Mobile Testing Automation

Automation of mobile testing has proven to be helpful. The list below is a non-complete but exhaustive list of main
advantages about automation of mobile application testing:

- Enable the automatic re-execution of a set of test cases, after every code increment or change
- Increases efficiency of testing and reduces human errors.
- Helps enhancement of regression test execution
- Saves a lot of time in comparison to manual test execution
- Test scripts can be executed in parallel on multiple devices (real devices, emulators, simulators)
- Same test suites can be performed repeatedly

Mobile applications are tested against:

- Quality

 Does the application exactly perform what is foreseen?
- Security

 Is the mobile application secure to stop/block any attack by external (e.g., hack) or internal (e.g..
malware Software)?

https://www.edureka.co/blog/what-is-selenium/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 14 of 65 Version 1.0

- Usability

 Is the application user friendly (ease of use)? Is the application self-explanatory? Is there availability
of help?

- Adaptability and interoperability (Different platforms)

 Is the Mobile application correctly resized on different devices (e.g., screen 5, 5.1 or 7 inches) with
all menus correctly shown?

- Synchronization, Connectivity

 Is the mobile application able to connect to the server (e.g., Telecom, Swisscom), over 2G, 3G, 4G,
5G, edge?

- Rollout

 for mobile application, time to market is a vital factor. Defect Fixes, new functionalities, new
services need to be delivered almost on daily basis,

- Installation / download

 How easily can the application be installed, removed, and reinstalled, updated. Does the procedure
work as expected?

We can easily understand that the Quality, Security, Usability can be “somehow” automatically tested, but most of
the checks need to be performed manually.

Other is the adaptability test; the functional test as well the application installation, should be tested automatically,
because of the need to deliver the application on daily basis. The execution of above points, need to be automated
and be executed and repeated on different devices with different processors, memory, screen size, etc.

1.2.2 Some ideas to create good, automated test cases

To create good and predictive working automated test cases, to be executed automatically, it is necessary to have
a good understanding of the application to be tested, all functional and non-functional requirements need to be
analyzed.

Any clarification and agreement should be taken together with the product owner and the developer. As outcome,
the "should" and "must" are clarified. The team then knows what should be (recommended) and what must
(mandatory) be tested together with the corresponding priorities of the tests.

Test Automation does not come for free, and in most cases, it requires continuous maintenance. The assumption
that an initial investment would be enough to run automation forever, is unfortunately not true. Only when the
application under test is not changing, then the automation maintenance requires in general small or ideally no
effort at all.

The testing team or the responsible people for testing (manual and/or automation) needs to consider several action
points and get ready well before they get the application to test and make sure those are respected and healthy
during the testing time:

- Test environment (Real device, emulator, simulator)
- Test Data
- Test Framework (ideally adapted and integrated to the adopted software development practices)
- Reporting and Monitor/Logging tools (status, evidences, execution time, etc.)
- Test Supporting Tools (create/maintain/execute test cases, defect reporting tools, etc.)

And from planning perspectives

- Plan approx. 10-15% of testing budget for creation, maintenance, execution and reporting of automated
test cases

- Calculate a ROI to be shown to the management
- Plan the time for execution, such as daily, after a new build and full or reduced test execution

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 15 of 65 Version 1.0

Automating test cases is becoming a more and more an exciting activity and many developers decide to change
from “only” software development to test automation.

The next list (not complete) shows some advantages and disadvantages in automatic or NOT automatic.

Main advantages of automation:

- Running automated tests case is usually more efficient and less time consuming than running same test
cases manually.

- Some test cases can be performed only automatically (e.g., fast reaction time of a given component).
- A simulation of simultaneous access by several users (not Load & Performance test) can be easily simulated

by test automation and not possible by manual testers.
- Perform full regression test or health check test following a new build.
- Perform automatic test in parallel to other activities (testers can work to e.g., new test cases creation).
- Test cases can be performed during the night or non-working days.

Main disadvantages of automation:

- Not all manual test cases are clearly defined and therefore the automated could not execute correctly.
- The efficiency of automation tests is highly dependent on the requirements. If the requirements are

incomplete or continually changing, then the automation tests will not bring much gain.
- Continuous change in requirements.
- A Set up for testware, test infrastructure can be very expensive or complex (over- or under- dimensioned

for the real needs).
- Tool and test environment set up / maintenance costs can be high.
- Outsourcing or contracting of automation tasks may not be cost effective on the long term. Developing in

house competence may be a better option.
- Writing ad-hoc test application, and not adopting e.g., the DDT technique.

Some ideas to reduce disadvantages and increase advantages

- Define clear expectation of test automation execution, in terms of

 Execution time

 Criticality of performed test cases: automatic vs manual execution

 Amount of test cases to be executed

 Duration of manual test execution vs. same automated
- Get motivated and well-trained testers (knowledge of testware, SDK, application)
- Keep the testers (continuity and motivation)
- Writing reusable test application vs. ad-hoc application
- Adopt whenever possible DDT technique. It will reduce the software maintenance costs
- A critical Proof of Concept before starting the new journey to automate at any cost is highly recommended.
- DO NOT AUTOMATE at any cost.

1.2.3 Differences between Manual and Automated Test

What is the main difference between a manual test and an automated test?

A manual test always requires a human intervention. The tester is the active and critical path for all testing activities.
He has to start application, enter any type of data, confirm, check for results and compare them vs expected results.

A test automation is an automated engine (e.g., an ad-hoc application), capable to perform several preprogrammed
instructions in each sequence or randomly, without any human intervention and repeated for an indefinite number
of times.

We try to give a definition of test automation in a compact way.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 16 of 65 Version 1.0

Test automation englobes both test scripting and test execution. Execution happens in a predefined sequence using
predefined or dynamic set of test data, without or with limited human intervention and completes with a human
friendly report (HTML, flat file, etc.) with all performed tests and results.

A well-defined test automation framework should be able to execute all planned test cases, regardless the test result
itself, i.e. a positive result as well a negative or discrepancies between expected and real result, should not bring
the test application to crash. At the end of the executed test cases set, all executed scripts will generate a human
readable report. Below an example of minimum reported information:

ID test case name Execution Result Expected Result Evidence Screenshot

001 Test_0001-Case1 Passed Passed Positive test ScreenShot1

002 Test_0001-Case2 Failed Passed Positive Test ScreenShot2

003 Test_0005-Case1 Failed Failed Negative Test ScreenShot3

Figure 1 : Test execution report (Example)

As you can see, in the table above, the Test_0001-Case2 is failed, whilst the expected result is to pass, but the
execution was not interrupted.

What is the main difference between test automation and mobile test automation?

The difference between a test automation and mobile test automation is mainly given by testing on a fix wired
systems like an application on a desktop (e.g., a GUI to interact with some data) and mobile devices like mobile
phone or any devices usually connected via Wireless connection.

In this syllabus we will talk mainly on mobile test automation.

1.3 Manual vs. Automated Tests

In the early days of pioneering test automation, a lot of tool-robots have been made available on the market.

The chimera to perform long test activities sometimes on critical devices reducing human risks and moving the test
activities from human to a machine (Robot) was the enormous success.

Unfortunately, the technology was too young, and it was clear within a short time that automating was not bringing
any payback and the excitements was degreasing.

As result more and more test cases were created, executed, and maintained for manual execution.

Over the time and after every release the number of test cases were increased, and a maintenance was more and
more difficult. In absence of real working automation tools and extremely high cost did not help to start moving
towards automation.

A shift-left to a new era of test automation was given by some tools “easy to program” by using visual basic
programming language, predefined library such as “wait for a given time” or “wait until the enter key is pressed”.
The framework was very heavy in terms of system resources needs and with low performances, nevertheless the
way to restart test automation was given.

The user library and framework became more and more lean, reliable, and faster.

Some new features like record the user activities and play back were helping in test automation, in fact the user had
to perform once the test execution and the recording feature was able to reproduce one-to-one the user activities
by changing data (yes DDT was starting)

After the first visible successes, departments within companies as well as new companies were investing in test
automation tools, framework, techniques, etc. The new era of test automation started.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 17 of 65 Version 1.0

At the beginning there was not a clear separation between software developer and automation tester. The first test
automation engineer was defined as “poor developer”, over the time they became more important and now the
test automation engineer is same if not better than a software developer in terms of product knowledge.

A test automation engineer must know the application in its completeness, how it is developed and how it works
resp. behaves to create test cases to detect as much as possible failures.

1.4 Success Factors of Automated test cases

As described in the previous chapters, to automate test cases it is to have a good preparation and knowledge for
both tools and application to be tested:

- Management helping and supporting the team
- Motivated and stable team
- Enthusiastic perform test to find failure and make the product more robust)
- Clear goals
- Good and stable automation tools
- Stable and reliable test environment, including simulators and /or emulators
- Supporting process, well established SDLC within company
- Clear and stable requirements

The clear definition of what can and what cannot be tested and / or automated

- Units are usually tested within unit testing
- GUI: are user interfaces working as expected?
- API
- Data access (store and retrieve data)

All above test areas can be easily tested by the developer or by tester by mean of Unit test, using Mock data and
standard unit testing tools.

Same unit test can be automated and performed as part of regression test during every new software build.

Starting from System Integration Test till System Test and possibly User Acceptance Test, most of the foreseen test
cases can be automated. Simple example

1. Start the application
2. Login into
3. Enter some data and store it
4. Retrieve some other data and check for quality
5. Logout

All the above test phases can be automated, if the application plans to use test data read from any file (e.g., Excel)
and not being hard coded, same test cases can be repeated with different data.

As an example, the login name “Albert Einstein” which would allow the user to login, could be duplicated in “Albert
Einstien” or “Albert 1stein” and check the reaction of the application, such as “user unknown”, or “illegal Character
in the username”, etc.

Given this example we can also create a simple Proof of Concept if test cases automation would help.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 18 of 65 Version 1.0

Assuming the following test cases resp. steps needs following time to execute

Step ID Case Manual exec (Secs.) Automatic exec (Secs)

00 Starting script and load data N/A 15

01 Start the application 10 3

02 Login onto 20 3

03 Enter some data, store them 30 5

04 Retrieve some data, check quality 30 5

05 Logout 5 1

For just one test execution we need 95 secs for manual test and 17 secs for automatic test + once 15 sec during the
initialization Phase for test data load.

In this example we see the automated test execution completes 5 time faster than a manual test, and if we perform
the same cycles by changing the e.g., username 10 times, we see immediately the ROI. At other times it is not easy
to see, but such evaluation is crucial to decide whether to automate or NOT to automate and achieve success or
not.

1.5 Types of Automated test cases (some ideas)

As discussed in the previous chapters the automation of test case at any cost is not a good practice.

Moreover, having a huge set of test case automated, it is not always good to execute them after every e.g., new
build due to possible performance issues.

To optimize test case execution, reduce unnecessary maintenance, creation of huge report, data analysis, the
automated test case should be prioritized.

Given the test execution requirements, the test case should be grouped in test suites to execute them separately or
as a whole.

Given following requirements (example)

- We have 6 builds per day, so a Smoke test needs to be completed within 7 minutes
- We need a fast regression test suite to complete within max 60 minutes
- From 23:00 till 6:00 no new builds will be created
- We have an official build every Friday from 16:00

The test automation team should prioritize the test case. They would be grouped in test sets to be executed in the
given sequence (of time). As a result, the following table could be created

ID Test Type Max duration Used Test Set # of TCs DDT (Test Data)

01 Smoke test 7 min. SMOKETestSet 15 1

02 Fast Regression 60min FASTRegrTestSet 149 10

03 Full regression 3 hours FULLRegrTestSet 894 50

04 Official build test 48 hours FULLRegrTestSet 894 1500

The number of test cases are decided based on type of test cases itself (MUST, SHOULD, COULD) and the time
available to execute the test:

- MUST (Priority High)
- SHOULD (Priority Medium)
- COULD (Priority Low)

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 19 of 65 Version 1.0

An Initial “Dry run” execution could help indicating the test cases execution duration.

Depending on test environment the test cases execution can considerably vary.

We can easily add or remove the test cases in the given Test suites, the only to perform all the test cases in the
maximum given time, as per test cases automation we can perform the Test Set giving more, or less input data, to
cover more scenarios.

Please see the ID-03 and ID-04 in the above table, the same test set are used, however, given the time for the
execution, for the ID-04 (running over a weekend) we can perform check with huge number of test data.

Note: This is an example and not necessary cover all real examples, please use it only as a clue.

1.6 Test reports by Test automation

Once the test cases are automated (see above manual vs. automate), it is necessary to have an easy-to-understand
report. In the chapter “Differences between Manual and Automated Test” (Chapter 1.2.3 above) there is a definition
of a minimum report. The most recent tools provide a deep information with all test steps executed, the execution
time and duration, link to the test step, evidence on data, screenshot, link to build number, number of execution
cycle, etc.

All outputs are generated automatically by the framework and available to the user (usually test automation
engineer), most of the reporting information can be selected or deselected to be part of the final report for
stakeholders.

The analysis of report helps to understand if

- All planned test cases have been executed (possibly human mistake in list definition)
- Which test cases have been correctly performed (regardless the expected result).
- The execution time is in the given expected range (e.g., DB Deadlock could prolong execution)
- The overall system behavior reflects the expectation (duration time, etc.)

An expert test analyst can analyze the report in a short time by checking the overall result or detailed information
and propose the Go for further tests activities (manual of automated) or NoGo reject the new build and revert back
to developer to be fixed (e.g., MUST test cases execution did not pass).

The test report should be available to all project’s members including business stakeholders.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 20 of 65 Version 1.0

2 APPIUM® Introduction

Timing 4*K2, 2*K3, 1*K1 = 100+150+10 = 260 minutes

Terms Mobile App, native app, emulator, simulator, hybrid app

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-2.1 (K2) What is Appium®
ATF-2.2 (K2) Appium® Philosophy
ATF-2.2.1 (K2) What Appium® is?
ATF-2.3 (K2) Why using Appium® is a good choice
ATF-2.4 (K3) Appium® Architecture
ATF-2.5 (K3) Emulator vs. Simulator vs. Real Devices
ATF-2.6 (K1) Appium® standard Repository

ATF-2H-01 Why to use Appium®
ATF-2H-02 When to use Appium®
ATF-2H-03 Appium® client-server architecture
ATF-3H-04 emulators, simulators

2.1 What is Appium®

Appium® is an open source, cross-platform automation testing tool developed as an addition to the already well-
established Selenium framework. It has been since 2012 and officially presented during a Selenium conference.
Finally, the project was donated to the JS Foundation in 2016 [cfr. JSF-01].

Appium® has been developed with the main goal of running scripts automatically to test native and hybrid mobile
applications on iOS, Android and Windows platforms.

A native application is that one developed to run on iOS or Android systems using the SDK development platforms.
Refer to chapter 0.11 "Acronyms” oben for detailed info about apps types.

- Mobile web apps

 Websites accessed using a mobile browser, e.g., Safari on iOS, Chrome on Android
- Hybrid apps

 apps with a native container and one or more Web Views embedded in that container. The Web
Views are little frameless browser windows that can show content from the web or from locally
stored HTML files. Hybrid apps allow the use of web technologies within a native-like user experience

- Native app

 apps built using the native mobile SDKs and APIs

Appium® can now also support testing of desktop applications on Windows Operating System using an automation
interface software called "WinAppDriver".

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 21 of 65 Version 1.0

2.2 Appium® Philosophy

The Appium® philosophy is based on the idea to avoid any changes in the native application, leading to recompilation
of the app to perform any test.

Automate mobile app testing by using any supported programming language (see below some of them) and test
framework with full access to interfaces.

What you test and validate, will be delivered to the final user as it is, no changes necessary.

Most of the popular programming languages are supported by both Selenium and Appium® WebDriver API client
libraries, C++, C#, Java, JavaScript, Python as an example.

The next list summarizes the main points about Appium®‘s philosophy

- No need to recompile the original application for test purposes, what you test will go live.
- No limitation imposed on programming languages. Most popular programming languages are supported.
- Test are performed on test environment which are production alike.

2.2.1 What Appium® is?

Appium® is an open-source automation tool managed by JS-Foundation [JSF-01]. It is free to be downloaded and
modified.

Appium® client is not developed for a single programming language, it supports all languages supported by selenium
libraries, such as C++, C#, Java, etc.

Appium® does not need any special tool to be recompiled. The server can be installed as is.

Appium® is not limited to a specific framework.

2.3 Why using Appium® is a good choice

Appium® consists of 2 main components

- Appium® Server

 It is responsible to convert the user commands to the real automation steps.
- Appium® client(s)

 There are different Appium® clients, one for each supported programming language.

 All clients offer same features, regardless the used language.

 It offers API interfaces to perform a predefined set of actions.

The client part is created by the user as per their needs. The created test cases once checked for quality and working
as expected, can be reused for other frameworks, mobile devices, without any need to adapt or recompile.

Note: due to some differences in Android and iOS capabilities, some adaptation may be necessary.

Apart from iOS, Android’s adapters, specialized for the different architectures, the application does not need to be
recompiled or configured to be executed on test environment or real device.

The use and reuse of mobile automated test cases running on Appium® for different architectures, devices or
applications does not generate any cost.

There are several tools like Appium®, such as Calabash, MonkeyTalk, Earlgrey, however, why we should choose
Appium®?

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 22 of 65 Version 1.0

The next list is a non-exhaustive list to support the decision to use Appium®

- Appium® is open source and free of cost of use.
- No need to change or rebuild the application (what you test, goes live)
- Great support from Appium® community
- Lot of examples available and ready to use
- Huge and detailed online documentation
- Multiplatform Support: Appium® supports all mobile applications running on Android, iOS, Windows,

running either on physical device, emulator or simulator.

2.4 Appium® Architecture

Appium® is a Node.js server communicating over HTTP that creates and handles WebDriver sessions.

The Appium® is like Selenium®, it receives HTTP requests from client with JSON payload and handles them.

The next picture (Figure 1 below) shows in an all-in-one picture a client-server connection.

Appium® is based on client-server architecture.

A client connects to a server via HTTP protocol request. The Server creates a session assigning an unique session-id,
all the next test activities will be executed as part of that session. So multiple clients can be tested in parallel by
creating different session.

 Appium® server is at its heart, a server that exposes REST APIs. It receives requests from client(s), listens for
commands, executes them on a mobile device, responds with HTTP response representing the result of the executed
command.

A native application can run on a physical device or on a emulator/simulator.

A session is a medium to send commands to the specific test application; a command is always performed in the
context of a session.

In the next picture, both emulators and physical devices are connected to the Appium® server, as a full scenario.

Figure 2 : Test environment
(full test environment)

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 23 of 65 Version 1.0

Explanation for Figure 2:

 Automatic tests scripts

1. User created test cases

Appium® Node.js server

2. The transport mechanism mobile JSONWP, “JSON Wire Protocol” is a specific set of predefined
endpoints exposed by REST API.

3. The Appium® server engine, receives commands from user, dispatches them to the correct
sessionId (in the example above to the connections (3) for Android and (6) for iOS devices. Any
answer coming back from the connection’s points will be sent back to the test script by mean of
sessionId.

 UI Automator Framework

4. For Android V.17 or above the UI Automator FW
5. For Android Version below V.17, Selendroid FW should be used.

Android emulator

6. The Android emulator for a given device (e.g., HUAWEI Pro 20) where the mobile application to
be tested is download

 Android Real device

7. The End final device where the mobile application to be tested is download

 Apple Instruments

8. Message dispatcher to emulator, real devices

 iOS emulator

9. An iOS emulator for a given device (e.g., iPhone 12) where the mobile application to be tested will
be download

 iOS Real device

10. The End final real device where the mobile application to be tested is download

2.5 Emulator vs. Simulator vs. Real Devices

To reduce a need for testing only on real devices, Appium® supports both real devices, emulators and simulator.

What is an emulator?

1

3

2

4

5

6

7

8

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 24 of 65 Version 1.0

An emulator is a mimic of hardware and software of a given real device.

- It uses the same software as installed on a real device.
- Most of the peripherals and sensors are emulated as well.
- The user “should not distinguish the behavior on an emulator vs a real device, apart reaction time and other

performances.
- The main advantage of emulator is to behave as it would be a physical device.

What is a simulator?

- It is not a replication (mimic) of a real hardware and software.
- Usually uses predefined patterns (e.g., setup a sensor will return “setup completed” but no behavioral

changes in test execution (light on will return “light is on” and light off command will return “light is off”
any further check f the light is on, could report “light is off”.

- The main advantage of a simulator is to see if the application is working, regardless of the real peripheral
behavior.

- In Appium® emulator are used to reflect the real behavior.

Pros and Cons of emulator / simulator

- The usage of a simulator is encouraged during the first phases of development, something like System
Integration Test (SiT) or Unit Test (UT). This because during the first phase of development (or test), the
main flow (behavior) is tested, regardless the real functionalities.

- However, the maintenance of device simulator is too expensive and used if no emulator is available.
-
- An emulator should be used during System Test (ST) / Functional Test (FT), Non-Functional Test (NFT) and

User Acceptance Test (UAT) for a given application.
- Due to the low maintenance cost and high scalability, the emulator is preferred during all the testing

activities for a mobile application.
- An emulator can be set up to run with different Operating System versions.

Pros and cons of using physical devices for application testing:

- High initial cost to buy physical devices
- A physical device will be obsolete in a short time and the updates will be discontinued after a relative short

time.
- Setup of a physical devices, following a high initial cost, need to perform regular OS updates or in special

cases keep the same OS version (disable any update).
- Final test on physical device will be encouraged, however to avoid huge investment, it would be good to

perform a survey or market check, to understand which devices are in use at most and reduce the physical
test on the few devices (e.g., HUAWEI P30 with OS Version xx.yy and iPHONE 12 with OS Version nn).

2.6 Appium® standard Repository

The Appium® kit can be downloaded from the GitHub Appium® repository https://github.com/appium/appium-
desktop. The download of desktop version which has a nice graphical interface, should be preferred.

Alternatively you can download the tool from http://appium.io/, JS-foundation [JSF-001] repository.

You can download Appium® for Mac, Android, Windows as image (installer) or source code.

Check https://github.com/appium/appium for Main Appium® repository and
https://github.com/appium/appium/tree/master/sample-code for examples on several supported languages.

The actual stable version of Appium® as of January 2022 is the 1.22.0.

Please check in the above pages for new version in either stable or development stage.

https://github.com/appium/appium-desktop
https://github.com/appium/appium-desktop
http://appium.io/
https://github.com/appium/appium
https://github.com/appium/appium/tree/master/sample-code

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 25 of 65 Version 1.0

3 APPIUM® - Installation and Setup

Timing 4*K2 + 1*K1 = 110 minutes

Terms Android, Sdk, Setup, System variables

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-3.1 (K1) Installing Appium®
ATF-3.2 (K2) Install Appium® on Windows system
ATF-3.2.1 (K2) Installation of all necessary components and tools
ATF-3.3 (K2) Install Appium® on MAC system
ATF-3.3.1 (K2) Installation of all necessary components and tools

ATF-3H-01 (P38) Appium® installation

3.1 Installing Appium®

Appium® is not just a single binary; it requires following environments such as Android_SDK and Java Development
environment (assuming we are using Java Appium® client). System Environmental Variables need to be created or
modified to accommodate the new tools’ location (e.g. Javapath, Path, etc.).

The next steps are shown as an example and do not replace the way how to install the tools as explained in the
official Appium® website https://appium.io/ .

The screenshot in the following sections describe a typical Appium® installation.

Several packages need to be installed before using Appium®, some of them, e.g., Java, could be already installed on
your system, in this case check the minimum version to be installed. If necessary, you need to update to a new
version of Java.

The next list shows the tools, libraries to be downloaded and installed to a local system (e.g., your PC)

- Java JDK
- Node.js (if make use Installation via NPM)
- Appium® Server
- Appium® Client Libraries (downloaded using Maven or as Zip)
- Android SDK is needed
- Xcode (Mac)

3.1.1 Prerequisites

Before you start using Appium®, you need to install several packages and tools. The installation of the Appium®
framework is a simple process, if all works as expected it will be ok, otherwise some administration experience such
as changing some environmental system variables would be needed. In the next pages in this chapter, you will see
an installation example with some screenshots to show what is expected to see or necessary to check following an
installation.

https://appium.io/
https://www.edureka.co/blog/java-tutorial/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 26 of 65 Version 1.0

You can download and install Appium® via NPM or by downloading and installing Appium® Desktop.

In this syllabus we follow the installation of Appium® Desktop, which is a comfortable Desktop-based installation
procedure to launch the Appium® server.

The following assumptions are made in order to reduce the description to a single environment, although the
installation to other environments is almost the same.

- Android Environment
- Windows 10 based Host machine, 64 bits.
- Used programming language Java
- Programming knowledge of Java [and Selenium]

3.2 Install Appium® on Windows system

The next lists will show what needs to be downloaded and the order of installation. Please note some tools or
libraries can be already installed or present on your system:

- Download

1. Android Studio
2. Appium® Jar files for Java
3. Appium® Desktop
4. Java

- Install

1. See next chapter 3.2.1 unterhalb

3.2.1 Installation of all necessary components and tools

We need to install Java environment, Android Studio, and setup some system variables.

The next chapters will give an overview of a typical installation procedures. Of course, this is an example and
different ways to install all the tools can be used. For a detailed installation check, please refer to the student
exercise document (should be shared during the training).

3.2.1.1 Part-1: Installation and Java Setup

Download and install the latest version of Java sdk (as of 1.1.2021, jdk 15.0.2 which will be used in this syllabus)

- Compressed Archive jdk-15.0.2_windows-x64_bin.zip
- Image jdk-15.0.2_windows-x64_bin.exe

Figure 3 : Java jdk Installation and setup

http://developer.android.com/sdk/installing/index.html
https://search.maven.org/search?q=g:io.appium%20AND%20a:java-client
https://appium.io/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/installing/index.html
https://download.oracle.com/otn-pub/java/jdk/15.0.2%2B7/0d1cfde4252546c6931946de8db48ee2/jdk-15.0.2_windows-x64_bin.zip
https://download.oracle.com/otn-pub/java/jdk/15.0.2%2B7/0d1cfde4252546c6931946de8db48ee2/jdk-15.0.2_windows-x64_bin.exe

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 27 of 65 Version 1.0

Follow the installation instructions, after a short time the installation will be completed.

Please refer also to https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html for documentation.

Setup (create or change) Java the environmental variables : JAVA_HOME and PATH

- The Java_HOME points to the installation directory, default “C:\Program Files\Java” resp. e.g.: “C:\Program

Files\Java\jdk11.0_10”
- In windows Start () search for system variables

- If necessary, create the variable JAVA_HOME

- And add the new variable (JAVA_HOME) to the PATH path.

Note: Once the installation is completed, it is possible to check the java version by entering the command “java -
version” in the command file “Dos command line”.

3.2.1.2 Part-2: Android Studio Installation and Setup

Open in browser the page https://developer.android.com/studio, download the Android studio (as of 1.1.2021 the
version is 4.1.2 for Windows 64-bit) and install it.

https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html
https://developer.android.com/studio

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 28 of 65 Version 1.0

Figure 4 : Appium® Installation and Setup

Create or change the address to ANDROID_HOME system variable ANDROID_PATH = (usually is the following path)
“C:\Users\name\AppData\Local\Android\sdk” where “name” is your user name, and add to the PATH the following
paths:

%ANDROID_HOME%\platform-tools
%ANDROID_HOME%\tools
%ANDROID_HOME%\tools\bin

To check that the installation is correct, start the Windows console command and enter the command
“sdkmanager –list”

If you see a list similar to above picture, then the Android installation is successfully completed.

3.2.1.3 Part-3: Appium® tool setup

Download from „https://github.com/appium/appium-desktop/releases” the latest Appium® tool Appium-Server-
GUI-windows-1.22.3.exe

Follow the installation instructions, once the Appium® is being installed and the app is start, you should see the
following window

https://github.com/appium/appium-desktop/releases
https://github.com/appium/appium-desktop/releases/download/v1.22.0/Appium-Server-GUI-windows-1.22.0.exe
https://github.com/appium/appium-desktop/releases/download/v1.22.0/Appium-Server-GUI-windows-1.22.0.exe

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 29 of 65 Version 1.0

To check that the installation is successfully completed, start the server and check if the next window is shown.

3.3 Install Appium® on MAC system

Installing Appium® on a MAC based system is not quite same as for Android for Windows, the next chapters will
show and explain the main steps.

3.3.1 Installation of all necessary components and tools

We need to install Java environment, setup some system variables, and install Appium® desktop application. The
next chapters will give an overview of the installation procedures.

Note: For a detailed installation check, please refer to the student document extension to this syllabus.

3.3.1.1 Part-1: Installation and Java Setup

The Tools installation on a MAC system is like the installation on Android

 Download, install and setup java system environment Variables
- Download Java “dmg” from java official download page
- Install Java, following the instruction given by installation package
- Once the installation is completed, without any error messages, enter on a terminal windows the command

“java -version”, if You get a java version number, then the installation was successful
- Setup environment variables, on a terminal window enter the following commands

 vim ~/.bash_profile

 In insert mode, enter the following elements:
a. export JAVA_HOME = $(/usr/libexec/java_home)
b. export PATH = $JAVA_HOME/bin=$PATH
c. export PATH = /usr/local/bin:PATH

 Save the changes, close the file (:wq!” command)

 Enable the new PATH: source ~/.bash_profile

https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 30 of 65 Version 1.0

3.3.1.2 Part-2: Installation of XCode and Homebrew

The installation of Xcode will be the next step.

- Search for Xcode on app store and install it
- Install homebrew [cfr Appendix C (6a)], by entering the code shown below on a terminal window

 /usr/bin/ruby -e "$(curl -fsSL - https://raw.githubusercontent.com/Homebrew/install/master/install)"

- Execute the following commands

 Brew update

 Brew doctor

 xcode-select –install (to complete the installation of XCode)

Depending on using Windows or MAC you should have now installed the Appium® framework on your machine.

https://raw.githubusercontent.com/Homebrew/install/master/install

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 31 of 65 Version 1.0

4 Using Appium®

Timing 2*K1, 7”K2, 3*K3 = 20+90+225 = 335 minutes

Terms Android, iOS, Sdk, Setup, System variables, Android Studio, Appium® Server, Xcode, sync
& wait mechanisms, maintainability (of test scripts)

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-4.1 (K1) Main pre-requisites
ATF-4.1.1 (K2) Typical test script structure
ATF-4.2 (K1) Writing a test procedure on Appium® 1.x
ATF-4.2.1 (K3) Writing a test procedure for app (explanation of Body)
ATF-4.2.2 (K2) Writing a test procedure for Android app (Example-1)
ATF-4.2.3 (K2) Writing a test procedure for iOS app (Example-2)
ATF-4.2.4 (K2) How to create a test script - step by step
ATF-4.2.4.1 (K3) Start the Appium® application
ATF-4.3 (K2) Executing a test procedure on real device
ATF-4.4 (K2) Sync (Wait Mechanisms)
ATF-4.5 (K2) Logging Mechanism
ATF-4.6 (K3) Maintainability of test scripts

ATF-4H-01 Creation of a test procedure, several exercises
ATF-4H-02 Wait API (Explicit, Implicit)

4.1 Main pre-requisites

Developing test automation scripts with Appium® framework could be done by using any of the main programming
language as a client (Ruby, Python, Java C# (.NET) and JavaScript).

In this document, will be used the Java implementation of the Appium® client libraries to show some test examples.

Similar procedures, as described here would be done, if, for any reason, is chosen a different client language to
implement the test scripts.

To start writing a script with Appium® a set of software tools must be installed as pre-requisite:

- Java JDK: to compile and run Java code.
- Android Studio: IDE to develop test scripts and manage SDK and emulators for Android app.
- Appium® Server: the core of Appium®, it can be installed local or in a cloud and it serves to handle the

communication between the chosen client language and the mobile app.
- XCode: IDE to develop test scripts and manage SDK and emulators for iOS app.
- Maven: to manage the project’s build, reporting and documentation.
- Junit or TestNG: framework to support test development, their execution and reporting.

In the next chapter a list of common, Android and iOS capabilities are listed, together with some examples.
Snippets of code will be used to demonstrate working examples.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 32 of 65 Version 1.0

4.1.1 Typical test script structure

The test automation framework where Appium® is integrated can be complex or less complex based on project
needs.

In general, in a layered architecture framework the Appium® libraries needs to be integrated with several other
components for reporting, exceptions handling, database connection handling, logging handling, authentication,
localization, integration with third party tools and others.

Here we focus only on the Appium® test script and what is the minimum needed to run it.

The next sub-chapters show an example of creating a test script using e.g. JUnit.

A test procedure follows the programming language syntax and guidelines, in the example for this syllabus and
student exercise document, the Java programming language is used.

Start with some directives to force the execution of a piece of code at a given phase, such as before the test start,
or just before the test ends.

Following section will serve to better understand the code examples snippets described in 4.2.2, 4.2.3, 4.2.4. Let’s
got through the main blocks to construct a test script.

Dependencies are loaded by the maven pom.xml file and here below are the main to include in it:

<dependencies>
 <!-- https://mvnrepository.com/artifact/io.appium/java-client -->
 <dependency>
 <groupId>io.appium</groupId>
 <artifactId>java-client</artifactId>
 <version>LATEST</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java -->
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>LATEST</version>
 </dependency>

<!-- https://mvnrepository.com/artifact/junit/junit -->
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>LATEST</version>
 <scope>test</scope>
</dependency>

</dependencies>

A typical test script is structured in several parts: Import of standard libraries, @Before, @Test, @After

- Imports
Import of standard libraries and Appium® specific libraries need to be done.
Example of needed object to import: MobileElement, AndroidDriver, DesiredCapabilities

- @Before
The directive will ensure that methods and anything defined following the declaration itself, will be
executed before the execution of any test.
The @Before contains for example all setup and initialization tasks to be execute prior any other command
sent to the device (emulator or real device).

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 33 of 65 Version 1.0

- @Test
The heart of test is defined in method body annotated with @Test annotation.
It is the main part of execution. Here all interactions with device and the application under test will be
performed, e.g., send data or commands to the application under test, wait for a user-input (e.g.,

 by an explicit Wait), etc.

- @After
The directive ensures that all activities defined after it, will be executed as last, before the application will
exit. The @After is usually understood as clean-up of any data, reset the device to initial state or quit the
communication driver. Most of the commands are not necessary but they can be explicitly executed as part
of good programming rule.

Although not mandatory, it is a good practice to instruct explicitly the server (in @Before) and therefore the device
or emulator how to set up the device to execute the tests, as an example

- Orientation (Page)
- Setting a timeout to a specified values if the device would not answer

will instruct the server how to set up the (page) orientation, a timeout (to wait) before answering back in case of no
actions, etc.

4.2 Writing a test procedure on Appium® 1.x

The next section will show 2 examples written using Appium®, one for an Android app and one for an iOS app. In
general, the test should look like the same but what changes is the device (real or emulator) and app setup which is
handled by the DesiredCapability of the Android or iOS driver.

Scenario of the test:

- Loading a mobile app AppiumBank;
- Log in with a user JohnB and password “testAppiumBank”;
- Click Make Payment button;
- Enter Payment details (Phone, Name, Amount, Country);
- Click Send Payment button;
- Confirm Payment with yes;

The two examples below do contain the sections described previously (Imports, @Before, @Test, @After)

In the Before section is set, which device to use with its properties (deviceName, deviceId), mobile OS to use
(platformName and platformVersion), app specific properties (absolutePathToExecutable, appPackage).

The test-method section is the core part of the test which implements the scenario above.

The After-method section in this case is only responsible to quit the driver and graciously close the test.

4.2.1 Writing a test procedure for app (explanation of Body)

Here below you find a breakdown of the sections of a simple test script for an Android app and a detailed explanation
line by line of the code.

Adopted standard for explanation, code example

- Explanation test
Code example

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 34 of 65 Version 1.0

Imported packages section:

- AndroidDriver is the driver that allows to interact with the device
import io.appium.java_client.android.AndroidDriver;

- AndroidElement is the Mobile App Element on which we are interacting

import io.appium.java_client.android.AndroidElement;

- Capabilities are used to set attributes to tell Appium® how you want your tests to be executed. The main

capabilities are set at Selenium level, but more specific can be set at the device level, hence Android in this
case.
import org.openqa.selenium.remote.DesiredCapabilities;
import io.appium.java_client.remote.MobileCapabilityType;
import io.appium.java_client.remote.AndroidMobileCapabilityType;

- To handle execution parameters and assertion. Here it serves to be able to use the Before and After code

sections
import org.junit.*;

- To identify elements on the mobile app using the selenium API

import org.openqa.selenium.By;

- Import the Object ScreenOrientation to instruct selenium in which orientation to test the app

import org.openqa.selenium.ScreenOrientation;

- Used to set the URL where the Appium® server is running

import java.net.MalformedURLException;
import java.net.URL;

@Before script section:

- Set capability “testName” with a descriptive name
dc.setCapability("testName", "Quick Start Android Native Demo");

- Set capability “deviceName” to instruct Appium® which device to use

dc.setCapability("deviceName",”<device_name>”);

- Set capability “udid” to set the deviceId

dc.setCapability("udid","<device_id>");

- Set capability “platformName” to set the OS to Android

dc.setCapability("platformName", MobilePlatform.Android)

- Set capability “platformVersion” to set the Android version

dc.setCapability("platformVersion", "7.0");

- Set capability “skipUnlock” to instruct Appium® to unlock the device or not before the script execution

dc.setCapability("skipUnlock","true");

- Set capability “noReset” to instruct Appium® to reset the app state or not before the script execution

dc.setCapability("noReset","false");

- Set capability “autoAcceptAlerts” it instructs Appium® to auto accept platform alerts automatically. This

includes privacy access permission alerts. Default is false and is valid only for iOS platform.
dc.setCapability("autoAcceptAlerts","false");

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 35 of 65 Version 1.0

- Set capability “app” to instruct Appium® the path where to find the app executable
dc.setCapability(MobileCapabilityType.APP, <absolute_path_to_apk_file>);

- Set capability “appPackage” for the Java package of the Android app you want to run. By default this

capability is received from the package manifest. Valid only for Android platform
dc.setCapability(AndroidMobileCapabilityType.APP_PACKAGE, "com.appium.Appium®Bank");

- Set capability “appActivity” for the Android activity you want to launch from your package. This often needs

to be preceded by a “.” (dot). By default, this capability is received from the package manifest
dc.setCapability(AndroidMobileCapabilityType.APP_ACTIVITY, ".LoginActivity");

- Set capability “bundled” for the app under test. Useful for starting an app on a real device or for using other

caps which require the bundleID during test startup. To run a test on a real device using the bundle ID, you
may omit the ‘app’ capability, but you must provide the ‘udid’ (appId)
dc.setCapability(IOSMobileCapabilityType.BUNDLE_ID, "com.appium.Appium®Bank");

- Create the AndroidDriver object with the URL to the running Appium® server

driver = new AndroidDriver<>(new URL("https://0.0.0.0:4723/wd/hub"), dc);

- Set the selenium implicit wait to 15 seconds. The maximum time which the driver will wait before throwing

a not found element exception
driver.manage().timeouts().implicitlyWait(15, TimeUnit.SECONDS;

@Test script body section:

- Instruct the driver to use the portrait orientation
driver.rotate(ScreenOrientation.PORTRAIT);

- Identify the app elements (username and password) by id and fill them with required values

driver.findElement(By.xpath("//*[@id='usernameTextField']")).sendKeys("JohnB");
driver.hideKeyboard();
driver.findElement(By.xpath("//*[@id='passwordTextField']")).sendKeys("testAppium®Bank ");

- Identify the login button element by id and click it

driver.findElement(By.xpath("//*[@id='loginButton']")).click();

- Identify the Make Payment button element by id and click it

driver.findElement(By.xpath("//*[@id='makePaymentButton']")).click();

- Identify the app elements (phone, name, amount, country) by id or text and fill them with required values

driver.findElement(By.xpath("//*[@id='phoneTextField']")).sendKeys("0541234567");
driver.findElement(By.xpath("//*[@id='nameTextField']")).sendKeys("Jon Baker");
driver.findElement(By.xpath("//*[@id='amountTextField']")).sendKeys("50");
driver.findElement(By.xpath("//*[@id='countryButton']")).click();
driver.findElement(By.xpath("//*[@text='Switzerland']")).click();

- Identify the Send Payment button element by id and click it

driver.findElement(By.xpath("//*[@id='sendPaymentButton']")).click();

- Identify the Confirmation button element by text and click it

driver.findElement(By.xpath("//*[@text='Yes']")).click();

@After script section:

- Instruct the Appium® Driver to quit the execution
driver.quit();

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 36 of 65 Version 1.0

4.2.2 Writing a test procedure for Android app (Example-1)

Here below find please the complete script with all sections combined:

 @Before
 public void setUp() throws MalformedURLException {
 dc.setCapability("testName", "Quick Start Android Native Demo");
 dc.setCapability("deviceName",”<device_name>”);
 dc.setCapability("udid","<device_id>"); //DeviceId from "adb devices" command
 dc.setCapability("platformName", MobilePlatform.Android)
 dc.setCapability("platformVersion", "7.0");
 dc.setCapability("skipUnlock","true");
 dc.setCapability("noReset","false");
 dc.setCapability(MobileCapabilityType.APP, <absolute_path_to_apk_file>);
 dc.setCapability(AndroidMobileCapabilityType.APP_PACKAGE, "com.appium.AppiumBank");
 dc.setCapability(AndroidMobileCapabilityType.APP_ACTIVITY, ".LoginActivity");
 driver = new AndroidDriver<>(new URL("https://0.0.0.0:4723/wd/hub"), dc);
 driver.manage().timeouts().implicitlyWait(15, TimeUnit.SECONDS);
 }

 @Test
 public void quickStartAndroidNativeDemo() {
 driver.rotate(ScreenOrientation.PORTRAIT);
 driver.findElement(By.xpath("//*[@id='usernameTextField']")).sendKeys("JohnB");
 driver.hideKeyboard();
 driver.findElement(By.xpath("//*[@id='passwordTextField']")).sendKeys("testAppiumBank ");
 driver.findElement(By.xpath("//*[@id='loginButton']")).click();
 driver.findElement(By.xpath("//*[@id='makePaymentButton']")).click();
 driver.findElement(By.xpath("//*[@id='phoneTextField']")).sendKeys("0541234567");
 driver.findElement(By.xpath("//*[@id='nameTextField']")).sendKeys("Jon Baker");
 driver.findElement(By.xpath("//*[@id='amountTextField']")).sendKeys("50");
 driver.findElement(By.xpath("//*[@id='countryButton']")).click();
 driver.findElement(By.xpath("//*[@text='Switzerland']")).click();
 driver.findElement(By.xpath("//*[@id='sendPaymentButton']")).click();
 driver.findElement(By.xpath("//*[@text='Yes']")).click();
 }

 @After
 public void tearDown() {
 driver.quit();
 }
}

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 37 of 65 Version 1.0

4.2.3 Writing a test procedure for iOS app (Example-2)

The example below implements the same scenario described for the Android environment (Example-1 above) but
adapted for an iOS platform.

The script is like the previous one, only few capabilities are changed, as they are platform specific (e.g.,
“autoAcceptAlerts” or “bundled”).

import io.appium.java_client.ios.iOSDriver;
import io.appium.java_client.ios.iOSElement;
import io.appium.java_client.remote.iOSMobileCapabilityType;
import io.appium.java_client.remote.MobileCapabilityType;
import org.junit.*;
import org.openqa.selenium.By;
import org.openqa.selenium.ScreenOrientation;
import org.openqa.selenium.remote.DesiredCapabilities;

import java.net.MalformedURLException;
import java.net.URL;

public class LocaliOSTest {

 protected iOSDriver<iOSElement> driver = null;
 DesiredCapabilities dc = new DesiredCapabilities();

 @Before
 public void setUp() throws MalformedURLException {
 dc.setCapability("testName", "Quick Start iOS Native Demo");
 dc.setCapability("deviceName", "<device_name");
 dc.setCapability("udid", "<device_id>");
 dc.setCapability("platformName", MobilePlatform.iOS);
 dc.setCapability("autoAcceptAlerts","false");
 dc.setCapability("platformVersion", "10.2");
 dc.setCapability("skipUnlock","true");
 dc.setCapability("noReset","false");
 dc.setCapability(MobileCapabilityType.APP, < absolute_path_to_ipa_file >);
 dc.setCapability(iOSMobileCapabilityType.BUNDLE_ID, "com.appium.AppiumBank");

 driver = new iOSDriver<>(new URL(("https://0.0.0.0:4723/wd/hub"), dc);
 driver.manage().timeouts().implicitlyWait(15, TimeUnit.SECONDS)
 }

 @Test
 public void quickStartiOSNativeDemo() {
 driver.rotate(ScreenOrientation.PORTRAIT);
 driver.findElement(By.xpath("//*[@id='usernameTextField']")).sendKeys("JohnB");
 driver.hideKeyboard();
 driver.findElement(By.xpath("//*[@id='passwordTextField']")).sendKeys("testAppiumBank ");
 driver.findElement(By.xpath("//*[@id='loginButton']")).click();
 driver.findElement(By.xpath("//*[@id='makePaymentButton']")).click();
 driver.findElement(By.xpath("//*[@id='phoneTextField']")).sendKeys("0541234567");
 driver.findElement(By.xpath("//*[@id='nameTextField']")).sendKeys("Jon Baker");
 driver.findElement(By.xpath("//*[@id='amountTextField']")).sendKeys("50");
 driver.findElement(By.xpath("//*[@id='countryButton']")).click();
 driver.findElement(By.xpath("//*[@text='Switzerland']")).click();
 driver.findElement(By.xpath("//*[@id='sendPaymentButton']")).click();
 driver.findElement(By.xpath("//*[@text='Yes']")).click();
 }

 @After
 public void tearDown() {
 driver.quit();
 }

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 38 of 65 Version 1.0

4.2.4 How to create a test script - step by step : Example 3

In this section we will go through the main steps to create an automated script.

All supporting tools are already installed and ready to use.

The next screenshot is shown as an example, in fact they can differ between different OS and version of Appium®.

The next example has been recorded on a macOS.

The next script has the goal to check the behavior of an editor APK, such as

- Start application
- Create a new text file
- Enter some text
- Save it
- Close it
- Check the existence of created text document

4.2.4.1 Start the Appium® application

Start the Appium® application and click the “Start Server” button.

The next picture will be shown once the Server

- has been started
- ready to receive commands from the Client API language
- send them to the target device over HTTP

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 39 of 65 Version 1.0

4.2.4.2 Start Android Studio.

The SDK and at least a device (emulator or real) should be ready to use.

4.2.4.3 Start the device using the “green run” action button.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 40 of 65 Version 1.0

The selected and started device should now be ready to receive commands from the Appium® server.

(For testing purpose, we have used a text editor APK and implemented a general scenario to edit, save and verify the
existence of a text file.)

We assume we do not have all info about “actions” implemented in the APK, so we need to find them.

- Identify elements on the APK
Here after is explained how to identify elements on a mobile app using the Appium® client and trigger
actions or get status on them. We are going to describe the Java implementation of the methods below:
writeContentInFile();
clickSaveButtonAndEditFileName();
goToInternalStorageAndVerifyFileIsPresent();

- Implementation and execution of script

 Using a debug mode, the developer can set a break point soon after the application has started and
then attach the session to the Appium® server as described below.

 Set a break point before the first test method is executed and after the Appium® capabilities are
loaded

 Start the execution of APK on Appium® side

 The emulator device should show the view below.

- Click the magnifying glass highlighted in the screenshot below.

- Once the Appium® window below is open, the user can set his own Desired Capabilities in a JSON format
or go to “Attach to Session” and leave the Appium® server to automatically get capabilities and attach the
session to the available device. See next screenshot

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 41 of 65 Version 1.0

- The current view in the device is represented in the Appium® window below and from here we can identify
app elements and interact with them.

- On the left side we find the current view of the app under test that got captured by the Appium® server and
on the right side are listed the ways to identify that area (in the forms of mobile element) in the test scripts.

- In this case the highlighted Xpath can be used to identify the area where to write content in the text app
and this will be used in the test script to send the commands which will serve to send the text to write into
the file.

Now that we know how to navigate to the mobile elements and get the identifier, we can implement the methods
for our first method and following the others.

writeContentInFile

In this method the text file area where to write our content is identified and a pre-defined text is written.
driver.findElement(By.xpath(TEXT_FIELD)).click();
Actions action = new Actions(driver);
action.sendKeys(MY_TEXT).perform();

TEXT_FIELD is the xpath and has the value below which we retrieved in the way described above
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameL
ayout/android.widget.FrameLayout/androidx.drawerlayout.widget.DrawerLayout/android.widget.LinearLayout";

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 42 of 65 Version 1.0

Create an Actions object which will take care to send the text MY_TEXT. It contains the text to be written into the
file

clickSaveButtonAndEditFileName

Identify the “Save button” and click on it. User is redirected in the edit file name section. Here the file name is edited
and the user confirms to save it.

driver.findElementsByAccessibilityId(SAVE_BUTTON).get(0).click();
wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(EDIT_FILE_NAME))).clear();
wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(EDIT_FILE_NAME))).sendKeys(fileNme + FILE_EXTENSION);
wait.until(ExpectedConditions.visibilityOfElementLocated(By.id(CONFIRM_FILE_NAME))).click();
wait.until(ExpectedConditions.visibilityOfElementLocated(By.id(DONE_FILE_NAME))).click();

This method implements a Selenium explicit “Wait” on each step, in order to be sure the target element is available
and can be interacted with.

The identification of the elements SAVE_BUTTON, EDIT_FILE_NAME, CONFIRM_FILE_NAME and DONE_FILE_NAME
is done in the same way as in the previous method, hence we skip further explanations.

goToInternalStorageAndVerifyFileIsPresent

User goes to internal storage and verifies that the new created file is present.

driver.findElementsByAccessibilityId(OPEN_BURGER_BUTTON).get(0).click();
wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(GO_TO_STORAGE_MANAGER))).click();
wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(GO_TO_INTERNAL_STORAGE))).click();

getFilesFromInternalStorage();
Assert.assertTrue(INTERNAL_STORAGE_CONTENT.contains(fileName + FILE_EXTENSION), "Verify Internal Storage contains" +
fileName + FILE_EXTENSION);

As in the previous methods, here we also use explicit waits.

To verify that file is present, we search in the device internal storage, get all files and verify its presence.

NOTE: For the complete source please refer to “Appendix D – Source Example Editor-APK”.

4.3 Executing a test procedure on real device

As discussed in the previous chapter a test can be executed indifferently on an emulator or real device.

To work on a real device a few setup things need to be done, apart from that all others is managed by Appium®
Agent (check also the picture in chapter 2.4).

- Connect your mobile to the computer via USB
- Enable USB-Debugging on Mobile (in Developer option)
- In Cmd line on your windows computer, enter the command “Adb devices”

The next screenshot indicated the most possible answers

- No device connected to computer (or no USB-Debugging enabled)
List of device(s) is empty

- Device is connected, USB-Debugging is enabled but non confirmed
The device is recognized, but not authorized to be contacted

- Device connected and USB-Debugging is approved
Device connected and USB-Debugging is approved too

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 43 of 65 Version 1.0

Figure 5 : Check for real device connection (adb command)

Start the test script in same manner as you have executed using an emulator. The application to be tested, will be
downloaded on mobile device and the test execution will start.

4.4 Sync (Wait Mechanisms)

The handling of the interaction and communication between the client and the devices (physical or emulator), is
the core part of Appium® framework. However, the one of the most critical part of an automated script is the time
to complete a tasks or the capability to take the control after a specified action is performed or a timeout is elapsed.

1. The application (APK) reacts to a command in a short time
2. The application (APK) does not react (within a given time or not at all)
3. The application (Script) takes the control back after a successfully completed command or a timeout

To make the point 3 happening, Appium® same as in Selenium uses two main strategies of wait, implicit and explicit.
In addition, the Java Thread sleep recommended to use in very rare cases, and we will see below the reason:

- Implicit Wait

An Implicit Wait informs the Appium® web driver to wait for specific amount of time before returning back
to the script with an exception as e.g., "NoSuchElementFound". It is set before the script begins and is valid
for all elements the script interacts with during the full execution unless a different wait (e.g., explicit) is
set for a specific element.

An implicit wait can be set to wait for different units of time, such as hours, minutes, seconds, etc. The
method accepts 2 parameters, the TimeUnit and a numeric value. In the example below, we instruct to
wait for 45 Sec. before getting back a result:

driver.manage().timeouts().implicitlyWait (45, TimeUnit.SECONDS);

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 44 of 65 Version 1.0

Example of implicit wait after loading an Apk

// capabilities has been loaded before
driver = new RemoteWebDriver (new URL ("http://127.0.0.1:4723/wd/hub"), capabilities);
driver.manage().timeouts().implicitlyWait(7, TimeUnit.SECONDS);

Example of implicit wait to find an element “Start”

driver.findElement(By.name("Start")).click();
driver.manage().timeouts().implicitlyWait(12,TimeUnit.SECONDS);

- Explicit Wait

The explicit wait is a dynamically “set wait command” for a specified condition to be completed. Instruct
the WebDriver by using Appium® Explicit wait.

The next will be “a Wait until” the condition happens, i.e., the 10 seconds is elapsed.

…
WebDriver wait = new WebDriverWait (driver, 10);
wait.until (ExpectedConditions.visibilityOfElementLocated(By.id("An_Element")));

Another way to wait is given by Thread.sleep

- Thread.sleep

The thread sleep, basically tells the java process to wait statically for a certain given amount of time. It will
always wait for the time even when it would not be necessary (for example the element is already available,
or the page as already shown a failure).

…
Thread.sleep (10)
 ...

Note: It is highly recommended to avoid the Thread.sleep wait, which could exponentially slow down the
entire test execution.

4.5 Logging Mechanism

The native programming languages like Java offer a variety of log methods. Do exist several Logging frameworks
and/or libraries options in the market that can be used to expand the logging features offered with more organized
logging templates and capabilities.

Depending on language and methods, the log methods can store text or performance information, such the time
spent e.g., to reload a page.

As described in the previous chapters, it will be a good rule to log information in different way, at beginning to check
the flow of scrips itself, would be necessary to store all executed steps.

Once the test scripts have been checked and they are stable, then the reported information can be reduced to less
relevant info. It is a good practice to implement through a flag the possibility to enable or disable on demand the
use of logged information.

Logged details should be used for reporting purpose of the executed flow and to help the test automation developer
to track the flow and correct in a short time any discrepancy.

Not to forget, Logs should not record any critical or personal information as per security definition.

So, all logs of sensitive data MUST be deactivated or disabled once the test will be completed.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 45 of 65 Version 1.0

4.6 Maintainability of test scripts

The automated scripts should be created in a way that can be easily understood by any stakeholder. For technical
stakeholders, code must be easily readable and self-documented while for non-technical stakeholders, there are
additional libraries that enable to write tests in a business language that make it easy to follow and comprehend.

In general, what defines a high-quality test is first of all, the ease to identify a problem in the System under test
(SUT), when the test fails. The intent of the test must be simple to read from the code. Finally, the test runs fast and
is reliable.

A code has a good maintainability when changes are not frequently needed and are easy to apply. In addition, when
a change is a made to the SUT and it does not affect the use case scenario it should not break the test scenario.
When a change to the SUT breaks a test, it has the minimum possible butterfly effect on test suites.

To minimize the impact of a change, use stable control locator strategy with accessibility id (for iOS the accessibility
identifier, for Android the content description and for Windows the AutomationId).

XPath, if used as per best practices, can be very robust and less susceptible to application changes. However, when
IDs or accessibility IDs are available in the app, the first choice for the locator should be on those, for the simple
reason that they will allow to pinpoint the exact element in the app we care about, even if the UI changes
appearance.

XPath is the most expressive and commonly accepted locator strategy, but automation engineers have long warned
of its drawbacks, and the low performance is the first reason which should be considered.

Time and expertise to find the right or optimal XPath has its cost as, unfortunately, very often is preferred the first
found XPath solution which accomplishes the goals over the best solution.

The presence of IDs and Accessibility IDs is a luxury which automation engineers cannot always expect,

Hence working with XPath and mastering its best practice is still a must and its usage is still a well-accepted industry
standard.

In addition, we should minimize repetition of code, minimize the things tested by one test case and create
abstraction between the test and the SUT.

Below we are introducing several patterns and practices for good script maintainability:

- Don’t Repeat Yourself (DRY)
- Single Responsibility Principle (SRP)
- Page Object Pattern (POP)
- Descriptive and Meaningful Phrases (DAMP)
- The SOLID Principle

4.6.1 Don’t Repeat Yourself (DRY)

The DRY is simply an approach, or we can say a different perceptive to programmers. DRY stands for Don’t Repeat
Yourself. In Java, it means don’t write the same code repeatedly. Suppose you are having the same code at many
places in your program, then It is known as DRY, You are repeating the same code repeatedly at different places.
Hence, the solution is obtained using the DRY concept by placing the methods in place of all repeated codes and
define the code in one method. So, by calling methods, we will reach the principle DRY.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 46 of 65 Version 1.0

4.6.2 Single Responsibility Principle (SRP)

The Single Responsibility Principle as the name suggests, this principle states that each class should have one
responsibility, one single purpose. This means that a class will do only one job, which leads us to conclude it should
have only one reason to change.

We don’t want objects that know too much and have unrelated behaviour. These classes are harder to maintain.
For example, if we have a class that we change a lot, and for different reasons, then this class should be broken
down into more classes, each handling a single concern. Surely, if an error occurs, it will be easier to find.

4.6.3 Page Object Pattern (POP)

A combination of both DRY and SRP, is represented by the Page Object Pattern. Page Object is a Design Pattern
which has become popular in test automation for enhancing test maintenance and reducing code duplication. A
page object is an object-oriented class that serves as an interface to a page of your SUT. The tests then use the
methods of this page object class whenever they need to interact with the UI of that page. The benefit is that if the
UI changes for the page, the tests themselves don’t need to change, only the code within the page object needs to
change. Subsequently all changes to support that new UI are in one place.

The Page Object Design Pattern provides the following advantages:

- There is a clean separation between test code and page specific code such as locators (or their use if
you’re using a UI Map) and layout.

- There is a single repository for the services or operations offered by the page rather than having these
services scattered throughout the tests.

In both cases this allows any modifications required due to UI changes to all be made in one place.

4.6.4 Descriptive and Meaningful Phrases (DAMP)

DAMP promotes the readability of the code. To maintain code, you first need to understand the code. To understand
it, you must read it. Consider for a moment how much time you spend reading code. It's a lot. DAMP increases
maintainability by reducing the time necessary to read and understand the code.

4.6.5 SOLID principle

Follow the SOLID Principle (cfr. Appendix C – Sources [13])

The SOLID principles are guidelines that can help you create maintainable and extendable classes and systems. It can
be shortly recalled as

a. S: Single responsibility Every class is responsible for exactly one thing, changing anything in a class will
change only one thing

b. O: Open-closed The classes should be open for extension but closed for modification. This can be
achieved with inheritance.

c. L: Liskov substitution Derived classes must be substitutable for their base classes.

d. I: interface segregation Make fine grained interfaces that are client specific, Classes should be as much
as possible specialized

e. D: Dependency inversion Depend on abstractions, not on concretions, i.e., class(es) should not depend
on concrete details defined in other classes

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 47 of 65 Version 1.0

5 List of system Capabilities

Timing 1*K1, 3*K2 = 10+75 = 85 minutes

Terms Capabilities

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-5.1 (K1) Server Capabilities
ATF-5.2 (K2) Common Capabilities to all OS
ATF-5.3 (K2) Android specific Capabilities
ATF-5.4 (K2) iOS specific Capabilities

5.1 Server Capabilities
The next list shows the “Desired capabilities” used to communicate with the server.

A Desired capabilities is a JSON object sent by the client to the server, i.e., a command with parameters such as keys
or values.

The client issues the command with the necessary parameter(s) and send the information (capabilities) to the server
to be executed.

To use the capabilities the class “import org.openqa.selenium.remote.DesiredCapabilities” must be imported in a Java
application.

The next chapters show the common capabilities for the environments and the specific one for Android and iOS.

By the capabilities (or setup commands), it is possible to change the standard behavior on the device. As an example,
if the device works in portrait mode setting capability to landscape, will change the display mode for the given device
from Portrait to Landscape, this could e.g., help to check if the displayed text is readable in both ways (portrait,
landscape) and no text or UI graphic are hidden to the user.

The next tables will show the main capabilities ordered by

- Common Server Capabilities
- Android Capabilities
- iOS Capabilities

Note: the list below may not be complete

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 48 of 65 Version 1.0

5.2 Common Capabilities to all OS

ID Capability Definition / Examples

01 App

Definition: Absolute local path or remote HTTP URL of the .ipa,.apk, or .zip file.
Description: Appium® will install the app binary on the appropriate device.
Example:
 caps.setCapability (“app”,”/apps/demo/MyExample.apk”
 caps.setCapability (“app”,”http://app.com/app.ipa”); or

Note: In case of Android OS, specifying the appPackage and appActivity capabilities (see table capabilities for
Android below), then this capability is not required:

02 automationName

Definition: It defines the automation engine. If Android SDK version is lower than 17, then the value
 Selendroid has to be entered, otherwise, the capability takes the default value

Example:
 DesiredCapabilities caps = new DesiredCapabilities(); // object is created
 caps.setCapability (“automationName”, “Selendroid”); // to set capability value for versions
 // lower than 17
Note: On iOS the capability is not necessary

03 browserName

Definition: Define the browser
Example:
 Android caps.setCapability(“browserName”, “chrome”); // browser Chrome
 caps.setCapability(MobileCapabilityType.BROWSER_NAME, “Chrome”);

 iOS caps.setCapability(“browserName”, “safari”); // Browser Safari
 caps.setCapability(MobileCapabilityType.BROWSER_NAME, “safari”);

04 deviceName

Definition Define the type of mobile device or emulator to be used
Example:
 caps.setCapability(“deviceName”, “Galaxy-1”);
 caps.setCapability(MobileCapabilityType.DEVICE_NAME,”Nexus-1”);

05
newCommandTime ,
newCommandTimeout

Definition: Wait for the given time to end a session
Description: Appium® will wait for the defined time in seconds for a command from the client before the
 client is assumed to been quit. By Default Appium® defines a timeout of 60 seconds.
Example:
 caps.setCapability (“newCommandTimeout”, “15”); // Set timeout to 15 secs.
 Caps.setCapability (MobileCapabilityType.NEW_COMMAND_TIMEOUT, “15”);

06 platformName

Definition: Set the mobile OS platform.
Description: Values as iOS, Android are supported
Example:
 caps.setCapability (“platformName”,”Android”); // Platform is Android
 caps.setCapability (MobileCapabilityType.PLATFORM_NAME, “Android”);

07 platformVersion

Definition: Set the mobile OS version
Description: Mobile OS can be entered
Example:
 caps.setCapability(“platformVersion”,”6.4”); // Version 6.4
 caps.setCapability(MobileCapabilityType.PLATFORM_VERSION, “6.4”)

08 autoLaunch

Definition: Install and launch the app automatically.
Description: Enable the automatic installation of application (default value is true). To disable the automatic
installation and lauch for the application the value false has to be entered

Example:
 caps.setCapability(“autoLaunch”,”false”); // Disable the automatic installation and launch
 for app.

09 Language
Definition: Set the language on the simulator/emulator.

Example: caps.setCapability(“language”,”It”); // It works only on the simulator/emulator

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 49 of 65 Version 1.0

10 Udid

Definition: A unique device identifier to identify iOS physical device.
Description: String up to 40 characters long (e.g., 1234544356…).
 This capability is used when automating apps on iOS physical device. UDID can
 retrieved iTunes, by looking on Serial Number:
Example:
 caps.setCapability(“udid”, “0123456789012345678901234567890123456789”);

11 orientation

Definition: Start the mobile app on a given orientation on emulator

Example: caps.setCapability(“orientation”, “PORTRAIT”); // or Landscape

Note: It works on simulator/ emulator only

12 noReset

Definition: Reset the application’s state before starting the session
Example:
 Default value is False, i.e. no reset performed
 caps.setCapability(“noReset”-,” true”); // request the Application to perform a reset

13 fullReset

Definition: reset the application
d. On Android

, it resets the app’s state by uninstalling the app instead of clearing the app data, i.e. will remove the
app after the session is complete.

e. On iOS
delete the entire simulator folder

Defaul value is False for both OS

Example: caps.setCapability(“fullReset”, “true”);

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 50 of 65 Version 1.0

5.3 Android specific Capabilities

ID Capability Definition / Examples

01 appPackage

Definition: This capability is for the Java package of the app to run on Android

Example: location.android.calculator_2
 caps.setCapability(“appPackage”, “location.android.calculator_2”);

02 appActivity

Definition: Specify the Android activity to launch from a given package (see appPackage capability)

Example: to specifiy the activity Calculator from package calculator_2
 caps.setCapability(“appActivity”, “location.android.calculator_2.Calculator”);

03 appWaitActivity

Definition: Android activity for which the user wants to wait

Example:
 caps.setCapability(“appWaitActivity”,”com.android.calculator2.Calculator”);

04 appWaitPackage

Definition: Package of the Android app to wait

Example: given the package on the location: location.example.android.myTestApp
 caps.setCapability (“appWaitPackage”,”location.example.android.myTestApp”);

05 deviceReadyTimeout

Definition: Set the timeout (in seconds) while waiting for the device to be ready

Example: caps.setCapability(“deviceReadyTimeout”,”10”);

06
enablePerformanceLogging

Definition:Enable the Chrome driver’s performance logging by the use of this capability.
Description: It will enable logging only for Chrome and web view; the default value is false:

Example: caps.setCapability(“enablePerformanceLogging”, “true”);

07 androidDeviceReadyTimeout

Definition:To set the timeout in seconds for a device to become ready after booting

Example:
 caps.setCapability (“androidDeviceReadyTimeout”, ”20”); // Timeout set to 20 seconds

08 androidDeviceSocket

Definition: Set DevTool socket name.
Description: Capability used to set DevTools socket name.
 Needed when an app is a Chromium-embedding browser.
 The socket is opened by the browser and the ChromeDriver connects to it as a DevTools
 Client (e.g., chrome_DevTools_remote)

Example: caps.setCapability (“androidDeviceSocket”, ”chrome_DevTools_remote”);

09 Avd

Definition: Name of avd to launch
Description: Using this capability, the name of avd to launch canbe defined

Example: caps.setCapability (“avd”, ”AVD_NEXUS_5”);

10 avdLaunchTimeout

Definition:Time to wait until the avd will be lauched
Description: This capability helps to define how long to wait for an avd to launch and connect to the
Android Debug Bridge (ADB).
 Value is defined in milliseconds; default value is 120000 ms

Example: caps.setCapability (“avdLaunchTimeout”, ”240000”);

11 avdReadyTimeout

Definition: Time to wait until the avd finish its boot animation
Description: You can specify the wait time (in milliseconds) for an avd to finish its boot animations
 Value is defined in milliseconds; default value is 120000 ms

Example: caps.setCapability (“avdReadyTimeout”, ”240000”);

12 avdArgs

Definition: To pass the additional emulator arguments when launching an avd

Example: to pass the parameter “netfast“ enter
 caps.setCapability (“avdArgs”,”netfast”);

13 chromedriverExecutable

Definition: Give the absolute local path to the WebDriver executable (if the Chromium embedder
 provides its own WebDriver, it should be used instead of the original ChromeDriver
bundled with Appium®)
Example: caps.setCapability(“chromedriverExecutable”,”/abs/path/to/webdriver”);

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 51 of 65 Version 1.0

14 autoWebviewTimeout

Definition: The following capability allows to set the time (in milliseconds) for which you need to wait

 for the Webview context to become active; the default value is 2000ms:

 To change the time to 3 secs (3000ms) enter
Example: caps.setCapability (“autoWebviewTimeout”, ”3000”);

15 intentAction

Definition: the capability “Intent action” is used to start an activity, as shown in the example below.
 The default value is android.intent.action.MAIN.

 For example, to start android.intent.action.MAIN or android.intent.action.VIEW enter
Example: caps.setCapability(“intentAction”, ”android.intent.action.VIEW”);

16 intentCategory

Definition: The capability “intent category” is used to start the activity

Default value: android.intent.category.LAUNCHER, android.intent.category.APP_CONTACTS:

Example: caps.setCapability (“intentCategory”, ”android.intent.category.APP_CONTACTS”);

17 intentFlags
Definition: Flags are used to start an activity (the default is 0x10200000), for example, 0x10200000:

Example: caps.setCapability (“intentFlags”, ”0x10200000”);

18 unicodeKeyboard
Definition: Enable Unicode input by using the following code
 the default value is false:
Example: caps.setCapability (“unicodeKeyboard”,”true”);

19 resetKeyboard

Definition:Set the keyboard to its original state
 The default value is false, No reset will be perfomed

Example: caps.setCapability (“resetKeyboard”,”true”);

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 52 of 65 Version 1.0

5.4 iOS specific Capabilities

ID Capability (iOS) Explanation

01 calendarFormat
Definition: Set the calendar format for the iOS simulator. It applies only to a simulator

Example: caps.setCapability(“calendarFormat”,” Gregorian”); \\ format to Gregorian

02 bundled

Definition: Start an app on a real device
Description: BundleId is used to start an app on a real device or to use other apps that require the
 bundled during the test startup, for example, io.appium.TestApp:
Example: caps.setCapability(“bundleId”,” io.appium.TestApp”);

03 launchTimeout

Definition: Specify the amount of time needed to wait for Instruments
Description: Specify the amount of time to wait for Instruments before assuming that it hung and
the
 session can be considered failed. The Value is in milliseconds
Example: caps.setCapability(“launchTimeout”,”30000”);

04 locationServicesEnabled

Definition: Enable location services. Applicable to simulator only
Description: This capability is used to enable location services.
Example: caps.setCapability(“locationServicesEnabled”,”false”);

05 locationServicesAuthorized

Definition: Location services alert does (not) pop up. This capability works together with the
 capability “bundled”
Description: This capability can be used together with bundled by using the bundled capability.
 This capability applies only on simulator.
 After setting this, the location services alert doesn’t pop up.
 The default value is false
Example: caps.setCapability(“locationServicesAuthorized”,”true”);

06 autoAcceptAlerts

Definition: Accept privacy permission alerts automatically
Description: Accept privacy permission alerts automatically, such as contacts, photos, location,
once they would arise
 By default, the automatic alert is deactivated
Example: caps.setCapability(“autoAcceptAlerts”,”true”);

07 nativeInstrumentsLib
Definition:You can use the native instruments library by setting up this capability:
Description:
Example: caps.setCapability(“nativeInstrumentsLib”,”true”);

08 nativeWebTap

Definition: Enable/disable real web taps in Safari, which are non-JavaScript based.

Description: Used to enable/ disable real web taps in Safari, which are non-JavaScript based.
 The default is false

Example: caps.setCapability(“nativeWebTap”,”true”);

09 safariAllowPopups

Definition: It allows JavaScript to open new windows in Safari. The default is the current simulator
setting.
Description: You can use this capability on a simulator only.
Example: caps.setCapability(“safariAllowPopups”,”false”);

10 safariIgnoreFraudWarning

Definition: Prohibits Safari from displaying a fraudulent website warning.

Description: This capability can be used only on a simulator
Example: caps.setCapability(“safariIgnoreFraudWarning”,”false”);

11 safariOpenLinksInBackground

Definition:This capability instructs / enables Safari to open links in new windows.

Description:
 the default keeps the current simulator settings:
Example: caps.setCapability(“safariOpenLinksInBackground”,”true”);

12 interKeyDelay

Definition: Delay the keystrokes sent to an element when typing

Description: Delay the keystrokes sent to an element when typing the key.
 The paramenter (time) is in milliseconds

Example: caps.setCapability(“interKeyDelay”,”100”);

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 53 of 65 Version 1.0

6 Appium® 2.0

Timing 3*K2 = 75 minutes

Terms N/A

Topics & Learning Objectives for this Chapter:

Learning Objectives

ATF-6.1 (K2) Overview on Appium® 2.0
ATF-6.2 (K2) Starting Appium® 2.0: what has changed
ATF-6.3 (K2) Starting Appium® 2.0: An example

6.1 Overview on Appium® 2.0

The Appium® Consortium released first version almost 7 years ago (cfr. Chapter 2.1). Since then, Appium® has
rolled out a lot of new features and automation backend architecture has also changed a lot.

At the time of writing this document Appium® 2.0 is ready to use but still in its beta version.

New / Improved features and some of the core goals for this major revision of Appium® 2.0 are shown below:

- Decouple the drivers

Appium®'s platform drivers (the XCUITest driver, UiAutomator2 driver, Espresso driver, etc...) have very
little in common with one another. They really ought to be developed as independent projects that
implement the same interface and can be used equivalently with the Appium® server. Appium® 2.0, the
code for these drivers will no longer be bundled with the main Appium® server. This drastically decreases
the size of an Appium® install. It also supports to install only the drivers you need to use. It also makes it
possible to freely update drivers independently of Appium® and of one another, so that you can get the
latest changes for one driver while sticking with a known stable version of another driver. In short this is a
very powerful optimization.

- Create a driver ecosystem

By using any existing Appium® drivers as a template, anyone can create their own custom drivers with a
minimum of extra code. All of these custom drivers can then be installed by any Appium® user.

- Create a plugin ecosystem

In addition to drivers, it's become clear that there are a huge variety of use cases for Appium®, which involve
the use of special commands or special ways of altering the Appium®’s behavior for specific commands.
Some examples are e.g., Find Element by Image API or the Appium + Test AI Classifier.

Appium® plugins will help with various use cases that require a change to Appium®’s default behavior. These
changes provide users an opportunity to build new plugins in the future.

Plugins have been designed to add arbitrary functionality before or after actual commands. Also, the plugin
can modify the Appium® Server itself to introduce new commands and distribute them. For example, the
current “image” plugin from Appium® helps find an element by an image and helps in image comparison. It
is possible to install those feature as independent plugins and anyone in the world will be able to easily
create Appium® plugins to implement new commands or alter the behavior of existing commands.

https://appiumpro.com/editions/32-finding-elements-by-image-part-1
https://appiumpro.com/editions/101-ai-for-appium--and-selenium

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 54 of 65 Version 1.0

- Miscellaneous standardization

There have been a lot of deferred work on Appium® that kept getting pushed off because it could introduce
a breaking change into the API. In Appium® 2.0 is taken the opportunity to make those changes and keep
bringing Appium® into the future.

6.2 Starting Appium® 2.0: what has changed

Appium® team has released Version 2.0.0-beta end of 2021, with the official Appium® image plugin and some minor
defect fixes and improvements.

The next part will indicate in some details the main changes

- Install Appium® 2.0 beta version can be installed using the below command
npm install –g appium@next

- -ah : to specify a directory to install Appium® drivers
Appium server -ah /path/to/install/drivers driver install uiautomator2. No default path.

- -ka or –keep-alive-timeout to specify the number of seconds the Appium® server should apply as both the
keep-alive timeout and the connection timeout for all requests. Defaults to 600 seconds.
Appium server -ka 800

Appium® drivers (UIAutomator2 driver, XCUITest driver, Espresso Driver, etc) are tightly coupled with Appium®
Server but from Appium® 2.0, these drivers are separated from Appium® Server and can be installed separately based
on users’ needs.

Creating custom drivers for any new platform or special use cases are going to be easy from Appium® 2.0.

- Command to list all available drivers in Appium® 2.0
appium driver list, an output similar to the next below, should be displayed
Listing of available drivers
- uiautomator2 [not installed]
- xcuitest [not installed]
- youiengine [not installed]
- windows [not installed]
- mac [not installed]
- mac2 [not installed]
- espresso [not installed]
- tizen [not installed]
- flutter [not installed]
- safari [not installed]
- gecko [not installed]

- Command to install a driver (e.g., uiautomator2 driver
appium driver install uiautomator2, An output similar to the next below, should be displayed
Attempting to find and install driver 'uiautomator2'
Installing 'uiautomator2' using NPM install spec
'appium-uiautomator2-driver'
Driver uiautomator2@1.61.2 successfully installed
- automationName: UiAutomator2
- platformNames: ["Android"]

- Command to all installed Appium® drivers
appium driver list –installed, An output similar to the next below, should be displayed

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 55 of 65 Version 1.0

Result:
Listing installed drivers
- uiautomator2@1.61.2 [installed (NPM)]
There are many other options offered by the Drivers CLI to install drivers from a specific source, update all
the installed drivers, etc. This simplifies the overall installation process and users have the flexibility to
choose to upgrade drivers without updating the server itself

- Command to list all available Appium® Plugins
appium plugin list, an output similar to the next below, should be displayed
Result
Listing available plugins
- images [not installed]

- Command to install an Appium® plugin
appium plugin install “images”, where “images” it the plugin to be installed

- Command to activate a plugin when starting the Appium® server
appium server -ka 800 --plugins=images -pa /wd/hub, where “images” it the plugin to be installed
Result
[Appium] Welcome to Appium v2.0.0-beta.10
[Appium] Non-default server args:
[Appium] plugins: { 0: images}
[Appium] basePath: /wd/hub
[Appium] keepAliveTimeout: 800
[Appium] tmpDir: /var/folders/f5/fwh8w_ms6q377gn_fb2bmjp40000gp/T
[Appium] Appium REST http interface listener started on 0.0.0.0:4723
[Appium] Available drivers:
[Appium] - uiautomator2@1.61.2 (automationName 'UiAutomator2')
[Appium] - xcuitest@3.36.0 (automationName 'XCUITest')
[Appium] Available plugins:
[Appium] - images@1.1.2 (ACTIVE)

No code changes are required in the client script by using the latest Appium® server.

The next list is a subset of all server arguments (both «new» and «deprecated»).

Appium® server can take-up several optional arguments. Several parameters are deprecated in Version 2.0, whilst
some new have been added. Check “Appendix C – Sources [18]” for a complete list of server’s arguments, default
values and examples.

Flag Default Description

--shell null Enter REPL mode

--allow-cors false Turn on CORS compatibility mode, which will allow connections to the Appium® server from
within websites hosted on any domain. Be careful when enabling this feature, since there is a
potential security risk if you visit a website that uses a cross-domain request to initiate or
introspect sessions on your running Appium® server.

--ipa null (iOS-only) abs path to compiled .ipa file

-a, --address 0.0.0.0 IP Address to listen on

-p, --port 4723 port to listen on

-pa, --base-path /wd/hub Initial path segment where the Appium®/WebDriver API will be hosted. Every endpoint will be
behind this segment.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 56 of 65 Version 1.0

Flag Default Description

--reboot false - (Android-only) reboot emulator after each session and kill it at the end

--command-
timeout

60 [DEPRECATED] No effect. This used to be the default command timeout for the server to use for
all sessions (in seconds and should be less than 2147483). Use newCommandTimeout cap
instead

--no-reset false [DEPRECATED] - Do not reset app state between sessions (iOS: do not delete app plist files;
Android: do not uninstall app before new session)

--full-reset false [DEPRECATED] - (iOS) Delete the entire simulator folder. (Android) Reset app state by
uninstalling app instead of clearing app data. On Android, this will also remove the app after the
session is complete.

--app-pkg null [DEPRECATED] - (Android-only) Java package of the Android app you want to run (e.g.,
com.example.android.myApp)

--app-activity null [DEPRECATED] - (Android-only) Activity name for the Android activity you want to launch from
your package (e.g., MainActivity)

6.3 Starting Appium® 2.0: An example

In this section we try to answer the question below:

What was changed to run successfully the automated script described in section 4.2.4 with Appium® 2.0?

- As prerequisite, Appium® 2.0 is installed on the machine with: npm install –g appium@next
- At list one driver is installed: appium driver install uiautomator2
- In a terminal window we run the Appium® server with the command “appium”

All elements we need in the script have been already inspected previously, but the inspector for Appium® 2.0 is
available at https://github.com/appium/appium-inspector/releases

The following changes were required in order to execute the same script with Appium® 2.0.

- Added capability “automationName” to tell Appium® which driver we want to use:
caps.setCapability("automationName", "UiAutomator2");

- The URL of the Appium® server does not need the routing to “/wd/hub/” and it is now just
http://0.0.0.0:4723:
driver = new AndroidDriver<>(new URL("http://0.0.0.0:4723"), caps);

After applied the code changes, and given the Appium® server is running with an emulator device ready to receive
commands, the script should run successfully without further changes.

In case we want to inspect more elements, we are going to use the new inspector downloaded previously for
Appium® 2.0. The inspector should look like the view below.

Again, given the Appium® server is still running with an emulator device ready we need to add following two
capabilities in order to start a session in the inspector:

- platformName, that we set for our needs to “Android”
- automationName, that we set to “UiAutomator2” for the driver to use

https://github.com/appium/appium-inspector/releases
http://0.0.0.0:4723/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 57 of 65 Version 1.0

Figure 6 : UIAutomator2

Click Start session, the current view of the emulator is reproduced in the inspector and ready for the inspection
analysis.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 58 of 65 Version 1.0

7 Bibliography

ID Edition Title Edition / Version

01 Manoj Hans Appium® Essentials 2015

02 Shankar Garg Appium® Recipes 2016

03 ISTQB CTAL Test Automation Engineer 2016

04 ISTQB CTFL Mobile Application Testing 2019

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 59 of 65 Version 1.0

8 Appendix A – Learning Objectives/Cognitive Level of
Knowledge
The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus will be examined
according to the learning objective for it. The level of Knowledge is the same as per ISTQB®.

Level 1: Remember (K1)
The candidate will recognize, remember, and recall a term or concept.

Keywords: Identify, Remember, retrieve, recall, recognize, know

Level 2: Understand (K2)
The candidate can select the reasons or explanations for statements related to the topic, and can summarize,
compare, classify, categorize, and give examples for the testing concept.

Keywords: Summarize, generalize, abstract, classify, compare, map, contrast, exemplify, interpret, translate,
represent, infer, conclude, categorize, construct models

Level 3: Apply (K3)
The candidate can select the correct application of a concept or technique and apply it to a given context.

Keywords: Implement, execute, use, follow a procedure, apply a procedure

Level 4: Analyze (K4)
The candidate can separate information related to a procedure or technique into its constituent parts for better
understanding and can distinguish between facts and inferences. Typical application is to analyze a document,
software or project situation and propose appropriate actions to solve a problem or task.

Keywords: Analyze, organize, find coherence, integrate, outline, parse, structure, attribute, deconstruct,
differentiate, discriminate, distinguish, focus, select

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 60 of 65 Version 1.0

9 Appendix B – Glossary of Appium® Terms

Ref Name Meaning

JSF-01 JS Foundation The Open JS Foundation is made up of 32 open-source JavaScript projects
including Appium®, Dojo, Electron, jQuery, Node.js, and webpack. The mission is
to support the healthy growth of JavaScript and web technologies by providing a
neutral organization to host and sustain projects, as well as collaboratively fund
activities that benefit the ecosystem.

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 61 of 65 Version 1.0

10 Appendix C – Sources

ID Link Remark

01 www.Istqb.org

02 https://github.com/appium/appium-desktop

03 http://appium.io/

04 https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html

05 https://developer.android.com/studio

06 https://raw.githubusercontent.com/Homebrew/install/master/install)

6a How to Install Homebrew on Mac {Step-by-Step} + How To Use It
(phoenixnap.com)

07 www.appium.org

08 https://www.selenium.dev/documentation/en/webdriver/ Used in Exercise Doc

09 https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction

Used in Exercise Doc

10 https://en.wikipedia.org/wiki/XPath Used in Exercise Doc

11 https://en.wikipedia.org/wiki/Session_(computer_science) Used in Exercise Doc

12 http://appium.io/docs/en/writing-running-appium/caps/ Used in Exercise Doc

13 https://en.wikipedia.org/wiki/SOLID

14 https://github.com/appium/appium Main Appium® repository

15 https://github.com/appium/appium/tree/master/sample-code Appium® Example’s repository

16 https://appiumpro.com/editions/32-finding-elements-by-image-part-1 Link for Appium® 2.0

17 https://appiumpro.com/editions/101-ai-for-appium--and-selenium Link for Appium® 2.0

18 http://appium.io/docs/en/writing-running-appium/server-
args/index.html#server-flags

Appium® 2.0 server flags

19 https://Glossary.istqb.org

http://www.istqb.org/
https://github.com/appium/appium-desktop
http://appium.io/
https://docs.oracle.com/javase/tutorial/tutorialLearningPaths.html
https://developer.android.com/studio
https://raw.githubusercontent.com/Homebrew/install/master/install
https://phoenixnap.com/kb/install-homebrew-on-mac
https://phoenixnap.com/kb/install-homebrew-on-mac
http://www.appium.org/
https://www.selenium.dev/documentation/en/webdriver/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/Session_(computer_science)
http://appium.io/docs/en/writing-running-appium/caps/
https://github.com/appium/appium
https://github.com/appium/appium/tree/master/sample-code
https://appiumpro.com/editions/32-finding-elements-by-image-part-1
https://appiumpro.com/editions/101-ai-for-appium--and-selenium
http://appium.io/docs/en/writing-running-appium/server-args/index.html#server-flags
http://appium.io/docs/en/writing-running-appium/server-args/index.html#server-flags
https://glossary.istqb.org/

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 62 of 65 Version 1.0

11 Appendix D – Source Example Editor-APK
Here you can find the complete Java source code for the Editor exercise described in chapter “How to create a test
script - step by step” above.

The complete project is stored in the zip below

APKEditor.Exercise.zip

Source : ioSampleTestEditor.java

import io.appium.java_client.android.AndroidDriver;
import io.appium.java_client.remote.AndroidMobileCapabilityType;
import io.appium.java_client.remote.MobileCapabilityType;
import org.apache.commons.lang3.RandomStringUtils;
import org.openqa.selenium.By;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.testng.Assert;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Objects;

public class ioSampleTestEditor extends Utils {

 final String fileName = RandomStringUtils.randomAlphanumeric(FILE_NAME_SIZE);

 @BeforeMethod
 public void setup() throws MalformedURLException {
 DesiredCapabilities caps = new DesiredCapabilities();
 String editorApkPath = Objects.requireNonNull(getClass().getResource("apk/text-editor.apk")).getPath();
 caps.setCapability(AndroidMobileCapabilityType.AUTO_GRANT_PERMISSIONS, true);
 caps.setCapability("skipUnlock", "true");
 caps.setCapability("noReset", "false");
 caps.setCapability("unicodeKeyboard", false);
 caps.setCapability("resetKeyboard", false);
 caps.setCapability(MobileCapabilityType.APP, editorApkPath);
 driver = new AndroidDriver<>(new URL("http://0.0.0.0:4723/wd/hub"), caps);
 wait = new WebDriverWait(driver, 10);
 }

 @Test
 public void fileCreationTest() {

 writeContentInFile();
 clickSaveButtonAndEditFileName(fileName);
 goToInternalStorageAndVerifyFileIsPresent(fileName);
 }

 public void writeContentInFile() {
 driver.findElement(By.xpath(TEXT_FIELD)).click();
 Actions action = new Actions(driver);
 action.sendKeys(MY_TEXT).perform();
 }

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 63 of 65 Version 1.0

 public void clickSaveButtonAndEditFileName(String fileNme) {

 driver.findElementsByAccessibilityId(SAVE_BUTTON).get(0).click();
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(EDIT_FILE_NAME))).clear();
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(EDIT_FILE_NAME))).sendKeys(fileNme + FILE_EXTENSION);
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.id(CONFIRM_FILE_NAME))).click();
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.id(DONE_FILE_NAME))).click();
 }

 public void goToInternalStorageAndVerifyFileIsPresent(String fileName) {
 driver.findElementsByAccessibilityId(OPEN_BURGER_BUTTON).get(0).click();
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(GO_TO_STORAGE_MANAGER))).click();
 wait.until(ExpectedConditions.visibilityOfElementLocated(By.xpath(GO_TO_INTERNAL_STORAGE))).click();
 getFilesFromInternalStorage();
 Assert.assertTrue(INTERNAL_STORAGE_CONTENT.contains(fileName + FILE_EXTENSION), "Verify Internal Storage contains" + fileName +
FILE_EXTENSION);
 }

 @AfterMethod
 public void teardown() {
 driver.quit();
 }
}

Source : Utils.java

import io.appium.java_client.MobileElement;
import io.appium.java_client.TouchAction;
import io.appium.java_client.android.AndroidDriver;
import io.appium.java_client.touch.offset.PointOption;
import org.openqa.selenium.By;
import org.openqa.selenium.NoSuchElementException;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class Utils {

 public static final String TEXT_FIELD =
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.wi
dget.FrameLayout/androidx.drawerlayout.widget.DrawerLayout/android.widget.LinearLayout";
 public static final String SAVE_BUTTON = "Save";
 public static final String EDIT_FILE_NAME =
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.wi
dget.FrameLayout/androidx.appcompat.widget.LinearLayoutCompat/android.widget.FrameLayout/android.widget.FrameLayout/android.widg
et.LinearLayout/android.widget.LinearLayout/android.widget.EditText";
 public static final String CONFIRM_FILE_NAME = "android:id/button1";
 public static final String DONE_FILE_NAME = "com.rhmsoft.edit:id/done";
 public static final String MY_TEXT = "This is some text to write on a text editor for testing purpose.";
 public static final String OPEN_BURGER_BUTTON = "Open navigation drawer";
 public static final String GO_TO_STORAGE_MANAGER =
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.wi
dget.FrameLayout/androidx.drawerlayout.widget.DrawerLayout/android.widget.LinearLayout/android.widget." +

"LinearLayout/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.ScrollView/android.wi
dget.LinearLayout/android.widget.HorizontalScrollView/android.widget.FrameLayout/android.view.View[3]";
 public static final String GO_TO_INTERNAL_STORAGE =
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.wi

A4Q Foundation Level Tester for Appium Syllabus

© A4Q Copyright 2022 Page 64 of 65 Version 1.0

dget.FrameLayout/android.widget.LinearLayout/android.widget.RelativeLayout/android.widget.FrameLayout/androidx.recyclerview.widget.Re
cyclerView/android.widget." +
 "RelativeLayout[1]/android.widget.LinearLayout/android.widget.TextView[1]";
 public static final String GET_FILES =
"/hierarchy/android.widget.FrameLayout/android.widget.LinearLayout/android.widget.FrameLayout/android.widget.FrameLayout/android.wi
dget.FrameLayout/androidx.drawerlayout.widget.DrawerLayout/android.widget.LinearLayout/android.widget.RelativeLayout/android.widget.
FrameLayout/androidx.recyclerview.widget.RecyclerView/android.widget.FrameLayout";
 public static final String GET_FILES_NAME = "//android.widget.RelativeLayout/android.widget.RelativeLayout/android.widget.TextView[1]";

 public static final String FILE_EXTENSION = ".txt";
 public static final int FILE_NAME_SIZE = 5;
 public static final int SCROLLS = 4;
 public static final Set<String> INTERNAL_STORAGE_CONTENT = new HashSet<>();

 public WebDriverWait wait;
 public AndroidDriver<MobileElement> driver;

 public void getFilesFromInternalStorage() {

 for (int i = 0; i <= SCROLLS; i++) {
 getInternalStorageContent();
 }
 }

 public void getInternalStorageContent() {
 wait.until(ExpectedConditions.visibilityOfElementLocated
 (By.xpath(GET_FILES)));

 List<MobileElement> listOf = driver.findElements(By.xpath(GET_FILES));

 for (MobileElement list : listOf) {

 String element = null;
 try {
 element = list.findElement(By.xpath(GET_FILES_NAME)).getText();
 } catch (NoSuchElementException e) {
 e.printStackTrace();
 }
 INTERNAL_STORAGE_CONTENT.add(element);
 }
 scrollDown();
 }

 private void scrollDown() {
 //if pressX was zero it didn't work for me
 int pressX = driver.manage().window().getSize().width / 2;
 // 4/5 of the screen as the bottom finger-press point
 int bottomY = driver.manage().window().getSize().height * 4 / 5;
 // just non zero point, as it didn't scroll to zero normally
 int topY = driver.manage().window().getSize().height / 8;
 //scroll with TouchAction by itself
 scroll(pressX, bottomY, pressX, topY);
 }

 private void scroll(int fromX, int fromY, int toX, int toY) {
 TouchAction = new TouchAction(driver);
 touchAction.longPress(PointOption.point(fromX, fromY)).moveTo(PointOption.point(toX, toY)).release().perform();
 }
}

