

2
A4Q Practical Tester Syllabus | V1.0 2024

Table of contents

1. Introduction..3

2. Practical Objectives (POs) Overview ...4

3. Equivalence Partitioning (PO-1) ..7

4. Boundary Value Analysis (PO-2) ... 11

5. Decision Tables (PO-3) ... 14

6. State Transition (PO-4) .. 17

7. Test Case Prioritization (PO-5) ... 19

8. Acceptance Test-Driven Development (PO-6) .. 23

9. Preparing a Defect Report (PO-7) ... 26

10. Estimation Techniques (PO-8) .. 28

11. Application of Testing Techniques (PO-9) .. 31

12. Create a Test Plan (PO-10) ... 36

13. Business outcomes ... 41

14. A4Q Practical Tester application .. 43

3
A4Q Practical Tester Syllabus | V1.0 2024

1. Introduction

The field of software testing is both broad and deep, encompassing a range of

techniques, methodologies, and tools that are essential for ensuring the quality,

reliability, and performance of software applications. In today's fast-paced

technological landscape, where software plays a pivotal role in almost every aspect

of our lives, the importance of rigorous and effective software testing cannot be

overstated.

The primary objective of this syllabus is to introduce learners to the practical

principles of software testing, providing them with the knowledge and skills

necessary to apply these principles in real-world scenarios. This syllabus is

designed to bridge the gap between theoretical knowledge and practical

application, ensuring that learners not only understand the concepts at an

intellectual level but are also able to apply them effectively in their testing

activities.

This syllabus will cover a comprehensive range of topics, beginning with an

overview of the fundamental practical principles of software testing. It will delve

into various testing techniques, such as Equivalence Partitioning, Boundary Value

Analysis, Decision Tables, and more, each carefully chosen to provide learners with

a well-rounded understanding of the practical aspects of software testing. In

addition to these core techniques, the syllabus will also explore advanced testing

strategies, including Exploratory Testing and Regression Testing Techniques,

preparing learners to tackle complex testing challenges with confidence.

As learners progress through the syllabus, they will engage in practical exercises

designed to reinforce their understanding and application of the topics covered.

These exercises will simulate real-world testing scenarios, providing learners with

the opportunity to apply their knowledge in a controlled, supportive environment.

The syllabus will also emphasize the importance of continuous learning and

professional development in the field of software testing. It will provide learners

with resources and guidance for further study, encouraging them to explore new

techniques, tools, and methodologies as they advance in their careers.

By the end of this syllabus, learners will have gained a solid practical hands-on

experience in the principles of software testing, equipped with the skills and

knowledge necessary to contribute effectively to the development and delivery of

high-quality software products. They will be prepared to meet the challenges of

the software testing profession, ready to apply their learning in a variety of

contexts, and capable of adapting to the ever-evolving landscape of technology.

4
A4Q Practical Tester Syllabus | V1.0 2024

2. Practical Objectives (POs) Overview

In the realm of software testing, your expertise is often measured by your ability

to not only comprehend theoretical concepts but to apply these principles

effectively in diverse testing scenarios. This chapter acts as a guide, helping you

navigate the syllabus's specific goals. These goals are carefully designed to develop

thorough practical testing skills, following the "Applying" and "Analyzing"

categories in the updated Bloom's Taxonomy.

In Bloom’s Taxonomy from 1956, he outlined six main categories: knowledge,

comprehension, application, analysis, synthesis, and evaluation. In 2001, a group

of cognitive psychologists, curriculum theorists, instructional researchers, and

testing specialists revised the category names of Bloom’s Taxonomy from nouns

to verbs.

Figure 1 Bloom's Taxonomy

This syllabus is structured around a series of practical objectives that span a wide

array of software testing techniques. Each objective is carefully chosen to address

a specific facet of the testing process, from the initial stages of test case design

through to the execution and evaluation of test outcomes. The objectives are not

merely a list of topics to be covered; they represent a roadmap for learners to

develop a comprehensive toolkit of testing skills that are applicable in real-world

situations.

5
A4Q Practical Tester Syllabus | V1.0 2024

One of the key features of this syllabus is its emphasis on practical application.

Recognizing the gap of theoretical knowledge in isolation, the syllabus alongside

its training, are designed to facilitate a seamless transition from understanding

testing concepts to implementing these ideas effectively. This is achieved through

a combination of detailed explanations, illustrative examples, and hands-on

exercises that encourage learners to explore and experiment with testing

techniques in a controlled environment. The integration of the "Practical Tester"

application to this syllabus through training, serves to reinforce this approach,

offering learners an interactive platform to practice and hone their skills.

The Practical Objectives encompass a broad range of topics, including but not

limited to, Equivalence Partitioning, Boundary Value Analysis, Decision Tables,

Estimation Techniques, and Test Case Prioritization. Each topic is explored in

depth, with learners encouraged to delve into the nuances of each technique,

understand its application, and appreciate its value in the testing lifecycle. Practical

questions and exercises are aligned with each objective, ensuring that learners

have ample opportunity to apply what they have learned in varied and complex

testing scenarios.

Furthermore, this syllabus acknowledges the dynamic nature of the software

testing field and the continuous evolution of testing methodologies. As such, it

aims to equip learners not only with current best practices but also with the

analytical skills necessary to adapt to new challenges and technologies. By

fostering a mindset of continuous learning and adaptability, the syllabus prepares

learners to become proficient testers who can contribute effectively to the

development of high-quality software products.

6
A4Q Practical Tester Syllabus | V1.0 2024

Practical Objective Name Description Recommended Time

PO-1 Equivalence Partitioning

Use equivalence

partitioning to derive

test cases

60 Minutes

PO-2 Boundary Value Analysis

Use boundary value

analysis to derive test
cases

60 Minutes

PO-3 Decision Tables

Use decision table

testing to derive test
cases

60 Minutes

PO-4 State Transition

Use state transition

testing to derive test
cases

60 Minutes

PO-5 Test Case Prioritization
Apply test case

prioritization
60 Minutes

PO-6
Acceptance Test-Driven

Development

Use acceptance test-

driven development to
derive test cases

90 Minutes

PO-7 Prepare a defect report Write a defect report 90 Minutes

PO-8 Estimation Techniques
Use estimation
techniques to calculate

the required test effort

60 Minutes

PO-9
Application of testing
techniques

Use practical

objectives to create
test cases

90 Minutes

PO-10 Create a Test Plan
Create a Standard
Test Plan

90 Minutes

7
A4Q Practical Tester Syllabus | V1.0 2024

3. Equivalence Partitioning (PO-1)

Equivalence partitioning is a black-box test technique in which test conditions are

equivalence partitions exercised by one representative member of each

equivalence partition.

An Equivalence Partition is a subset of the value domain of a variable within a

component or system in which all values are expected to be treated the same

based on the specification.

Equivalence partitioning can be applied to various types of data, including

continuous/discrete, ordered/unordered, and finite/infinite partitions.

Here are examples to illustrate each type:

● Continuous / Discrete

Continuous: Temperature settings on a thermostat ranging from 18°C to 32°C.

This range can be partitioned into equivalence classes such as low (18°C to 22°C),

medium (23°C to 26°C), and high (27°C to 32°C) settings. The temperature

setting is continuous because it can take on any value within the range, including

decimals.

Discrete: Number of items in a shopping cart on an e-commerce website, which

can only be whole numbers (0, 1, 2, 3, ...). This could be partitioned into

equivalence classes like empty (0 items), few (1-3 items), many (4-10 items), and

bulk (more than 10 items).

● Ordered / Unordered

Ordered: Credit score ratings ranging from 300 to 850. These scores can be

partitioned into poor (300-579), fair (580-669), good (670-739), very good (740-

799), and exceptional (800-850). This is ordered because the scores follow a

sequential and logical order from poor to exceptional.

Unordered: Types of pets in a veterinary clinic's database (e.g., cat, dog, bird,

reptile). These can be partitioned into equivalence classes based on species. The

categories are unordered because there isn't a natural hierarchy or sequence

among the types of pets.

● Finite / Infinite

Finite: Colors in a select box on a product page, such as red, blue, green, and

yellow. The partition is finite because there is a limited number of colors from

which to choose.

Infinite: Input field for a user's age on a form, theoretically ranging from 0 to an

undefined upper limit. In practice, you might set a reasonable upper limit based

on the context (e.g., 0 to 120 years old), but technically, the range of possible

ages can be considered infinite. The equivalence partitions might be child (0-12),

8
A4Q Practical Tester Syllabus | V1.0 2024

teenager (13-19), adult (20-64), and senior (65+), acknowledging that the infinite

nature of age is curtailed by biological limits.

Note that the partitions must not overlap or be empty.

At its core, equivalence partitioning simplifies the testing process by reducing the

number of test cases needed to cover all possible input scenarios. This technique

operates on the principle that if a certain input from a partition works, other inputs

from the same partition are expected to produce similar results. Consequently,

this reduces the testing effort without compromising the thoroughness of the test

coverage.

An example of continuous equivalence partitions (EQP) for the field “Age”

of a ticketing system that calculates the price depending on the age of a

user:

1. From 0 to 5: free ticket, EQP name: Toddler

2. From 6 to 17: 50% discount, EQP name: Minor

3. From 18 to 65: Full price, EQP name: Adult

4. More than 65: 35% discount, EQP name: Senior (Infinite partition)

Figure 2 Equivalence partitions.

Moreover, equivalence partition can be Valid or Invalid partitions. Here's

a closer look:

Valid Partitions

Valid partitions contain input values that are expected to be accepted by the

system. Testing with values from valid partitions ensures that the system behaves

as expected under normal conditions.

● Example 1:

Input Field: Age in a sign-up form.

Valid Partition: Ages 18-65, assuming the service is targeted at adults up to

retirement age.

Test Case: Entering an age of 30 should successfully pass the validation check.

9
A4Q Practical Tester Syllabus | V1.0 2024

● Example 2:

Input Field: Password during account creation.

Valid Partition: Passwords that are 8-16 characters long and include at least one

number, one uppercase letter, and one special character.

Test Case: A password like "Passw0rd!" should be accepted as it meets the criteria.

Invalid Partitions

Invalid partitions, on the other hand, contain input values that are expected to be

rejected by the system. Testing with values from invalid partitions ensures that

the system properly handles errors or unexpected inputs.

● Example 1:

Input Field: Age in a sign-up form.

Invalid Partition #1: Ages less than 18. This partition tests the system's ability to

enforce minimum age requirements.

Invalid Partition #2: Non-numeric or negative values. This partition tests the

system's ability to validate the type and range of the input.

Test Case for #1: Entering an age of 15 should result in an error message

indicating that the user is too young.

Test Case for #2: Entering an age of "-5" or "twenty" should result in an error

message indicating invalid input.

● Example 2:

Input Field: Password during account creation.

Invalid Partition #1: Passwords shorter than 8 characters or longer than 16

characters.

Invalid Partition #2: Passwords that lack the required mix of characters (e.g.,

missing a number or special character).

Test Case for #1: A password like "Short" should be rejected due to insufficient

length.

Test Case for #2: A password like "password" (without numbers or special

characters) should be rejected due to not meeting complexity requirements.

Equivalence Partitioning and Coverage Metrics

In Equivalence Partitioning, coverage elements are defined by equivalence

partitions. Achieving full coverage using this method necessitates that test cases

encompass every designated partition (valid and invalid alike), ensuring that

each partition is tested at least once. Coverage efficiency is calculated by

comparing the count of partitions tested by at least one test case against the

total count of designated partitions, this ratio is then presented as a percentage.

It's common for test subjects to encompass various partition sets (for instance,

10
A4Q Practical Tester Syllabus | V1.0 2024

those with multiple input parameters), leading to scenarios where a single test

case may span across partitions from distinct sets. For situations involving

multiple partition sets, the most basic coverage standard is known as Each

Choice coverage. These standard mandates that every partition within every set

must be addressed by at least one test case. It's important to note, however,

that Each Choice coverage does not consider the potential combinations of these

partitions.

In summary, valid partitions help to verify that the system functions correctly for

expected, correct inputs, while invalid partitions ensure that the system gracefully

handles incorrect or unexpected inputs. By designing tests that cover both valid

and invalid partitions, testers can effectively ensure the robustness and reliability

of the system.

11
A4Q Practical Tester Syllabus | V1.0 2024

4. Boundary Value Analysis (PO-2)

Boundary Value Analysis (BVA) is a software testing technique that involves

creating test cases based on the boundary values of input domains. BVA is based

on the principle that errors are most likely to occur at the boundaries of input

domain ranges rather than in the center. By focusing on the boundary values,

testers can efficiently identify potential issues with less effort compared to testing

all possible inputs.

Boundary Value Analysis is particularly useful because it targets the edge cases

that are often overlooked during the testing process. These edge cases are critical

as they are more prone to errors and boundary conditions are common points of

failure in software applications. By ensuring these boundaries are correctly

handled, the overall reliability and robustness of the application can be significantly

improved.

In BVA, test cases are designed to include:

● Values just inside the boundaries (on the edge)

● Values just outside the boundaries

● The exact boundary values

Example: a recording unit accepts numbers from 10 to 500 inclusive.

We first define the equivalence partitions of the example:

2 BVA & 3 BVA Methods

2 BVA Method: Focuses on the minimum and maximum values. For a given range,

this method would consider two values: just below the minimum and just above

the maximum.

12
A4Q Practical Tester Syllabus | V1.0 2024

3 BVA Method: Expands upon the 2 BVA method by also considering the exact

boundary values in addition to the values just outside the boundary. This method

provides a more thorough coverage of the boundary conditions.

The three-value Boundary Value Analysis (BVA) method demonstrates a more thorough

approach in comparison to its two-value counterpart. This methodology is adept at identifying

bugs that may remain undetected through the application of the two-value Boundary Value

Analysis. To illustrate, consider a programming scenario involving a conditional statement such

as “if (x ≤ 10) …”. Suppose there's an error in the implementation, and the condition has been

incorrectly coded as “if (x = 10) …”. The following figure represents the incorrect

implementation of the condition.

In this situation, any test data generated using the two-value Boundary Value Analysis method,

which would typically include values like x = 10 and x = 11, would fail to uncover this flaw. This

is because neither of these test values challenges the erroneous implementation directly. On

the other hand, by employing the three-value Boundary Value Analysis, which extends the test

data set to include a value like x = 9, the mistake becomes apparent. This is because x = 9

directly contradicts the incorrect implementation, highlighting the defect. Consequently, the

13
A4Q Practical Tester Syllabus | V1.0 2024

three-value approach is more likely to expose problems that the two-value method would

overlook, underlining its superiority in ensuring a more exhaustive testing process.

14
A4Q Practical Tester Syllabus | V1.0 2024

5. Decision Tables (PO-3)

In the intricate world of software testing, decision tables stand out as a crucial

instrument for clarifying complex decision-making scenarios. These scenarios,

which involve numerous input conditions affecting a variety of outcomes, require

a methodical approach for their detailed examination. Decision tables, with their

organized tabular format, adeptly meet this need by providing a framework for

systematically exploring and testing every possible combination of conditions and

their ensuing actions.

A decision table is essentially a tabular representation that categorizes input

conditions and their resulting actions into distinct sections. This division into

conditions and actions allows for a logical and transparent visualization of the

decision-making process. The table consists of condition stubs and action stubs on

one axis and condition entries and action entries on another. Condition stubs list

the various conditions or criteria that can influence decision outcomes, acting as

the inputs for the table. Action stubs outline the potential outcomes or steps taken

in response to these conditions, representing the outputs of the decision-making

process. Condition entries, placed under the condition stubs, detail the specific

states or values of the conditions being evaluated. Action entries, found under the

action stubs, clearly define the actions undertaken as a reaction to the set

conditions.

The process begins with the identification of all relevant conditions and the range

of possible actions that the system can take. This comprehensive listing is crucial

to ensure that the decision table fully captures all elements of the decision logic. Once

these conditions and actions have been identified, they are used to construct the

decision table, which delineates all conceivable combinations of conditions and the

corresponding actions for each combination.

The final step involves extracting test cases directly from the streamlined decision

table. This ensures that each combination of conditions and their resulting actions

are comprehensively tested, covering all plausible scenarios, and guaranteeing

thoroughness in the testing process.

To provide a comprehensive understanding, let's delve into two distinct examples

that demonstrate the practical application of decision tables in software testing

scenarios. Each example will be accompanied by a detailed description of its

decision table.

15
A4Q Practical Tester Syllabus | V1.0 2024

● Example 1: User Access Level Testing

Scenario:

Consider a software system where user access is determined based on two

conditions: the user's role (Admin, User, Guest) and account status (Active,

Inactive). The system actions include granting full access, limited access, or no

access.

Decision Table for User Access Level:

Role Account Status Access Level

Admin Active Full Access

Admin Inactive Limited Access

User Active Limited Access

User Inactive No Access

Guest Active Limited Access

Guest Inactive No Access

Description of test cases:

- For Admins with an Active account status, the system grants Full Access.

- Admins with an Inactive account status receive Limited Access as a

precaution.

- Users with an Active status are provided Limited Access, ensuring they can

perform their roles without full system control.

- Users and Guests with an Inactive status are denied access to maintain

security.

- Guests with an Active status receive Limited Access to explore certain

features of the system without making significant changes.

● Example 2: Premium Feature Eligibility

Scenario:

Consider an online platform determines if a user is eligible for a premium feature

based on two conditions: whether the user has a subscription (True/False) and if

the user has been active for more than a year (True/False). The action is to enable

or not enable the premium feature for the user.

16
A4Q Practical Tester Syllabus | V1.0 2024

Decision Table for Premium Feature Eligibility:

Condition/Action Case 1 Case 2 Case 3 Case 4

User Has Subscription T T F F

User Active > 1 Year T F T F

Enable Premium Feature X

Description of Cases:

- Case 1: The user has a subscription and has been active for more than a

year. The premium feature is enabled (marked with "X").

- Case 2: The user has a subscription but has not been active for more than

a year. The premium feature is not enabled (indicated by an empty space).

- Case 3: The user does not have a subscription but has been active for more

than a year. Again, the premium feature is not enabled.

- Case 4: The user does not have a subscription and has not been active for

more than a year. The premium feature remains not enabled.

The use of decision tables in testing brings several benefits, including ensuring

thorough coverage of all potential condition and outcome combinations, providing

clarity in complex decision-making scenarios, and facilitating the efficient design

of test cases. However, the method also comes with challenges, particularly when

dealing with a large number of conditions, which can make the decision table

unwieldy and complex. Additionally, identifying and focusing on the most relevant

combinations of conditions, especially in scenarios with a high degree of

complexity, can be a demanding task.

By adopting decision tables in the testing process, testers can navigate the

complexities of software behavior in decision-driven scenarios, enhancing the

effectiveness and reliability of the testing outcomes. Through meticulous planning

and strategic simplification, the challenges posed by decision table complexity can

be managed, ensuring that this powerful tool remains an invaluable asset in the

software tester's toolkit.

17
A4Q Practical Tester Syllabus | V1.0 2024

6. State Transition (PO-4)

State Transition Testing is a dynamic and powerful testing technique used to

analyze the behavior of an application for different input conditions in various

states. This method is particularly useful in scenarios where the software system

has a finite number of states and the transitions between these states are triggered

by events or conditions. By focusing on the valid and invalid state transitions,

testers can ensure that the application behaves as expected under all

circumstances, thereby identifying defects that might not be detected through

other testing techniques.

Consider an application with a pin management system that has several states

related to account status: Start (S1), Number of tries: 1 (S2), 2 (S3) or 3 (S4),

Access Granted (S5) and Account Blocked (S6). Transitions between these states

occur based on specific events such as user actions or administrative interventions.

Transitions: Ask for Pin, Incorrect Pin, and Correct Pin

A state transition diagram models the behaviour of a system by showing its

possible states and valid state transitions. A transition is initiated by an event,

which may be additionally qualified by a guard condition. The transitions are

assumed to be instantaneous and may sometimes result in the software acting.

The common transition labelling syntax is as follows: “event [guard condition] /

action”. Guard conditions and actions can be omitted if they do not exist or are

irrelevant for the tester.

A state transition diagram can also be represented as a state table. A state table

is a model equivalent to a state transition diagram. Its rows represent states,

and its columns represent events (together with guard conditions if they exist).

Table entries (cells) represent transitions and contain the target state, as well as

the resulting actions, if defined. In contrast to the state transition diagram, the

18
A4Q Practical Tester Syllabus | V1.0 2024

state table explicitly shows invalid transitions, which are represented by empty

cells.

A test case based on a state transition diagram or state table is usually

represented as a sequence of events, which results in a sequence of state

changes (and actions, if needed). One test case may, and usually will, cover

several transitions between states.

• Example of all state coverage (2 test cases):

• S1 -> S2 -> S3 -> S4 -> S6

• S1 -> S2 -> S5

• Example of valid transitions coverage (4 test cases):

• S1 -> S2 -> S3 -> S4 -> S6

• S1 -> S2 -> S5

• S1 -> S2 -> S3 -> S5

• S1 -> S2 -> S3 -> S4 -> S5

 Ask for Pin Correct Pin Incorrect PIN

(S1) Start S2 - -

(S2) 1st Try - S5 S3

(S3) 2nd Try - S5 S4

(S4) 3rd Try - S5 S6

(S5) Access

Granted
- - -

(S6) Account

Blocked
- - -

19
A4Q Practical Tester Syllabus | V1.0 2024

7. Test Case Prioritization (PO-5)

Test case prioritization is a strategic approach in software testing aimed at

optimizing the order in which test cases are executed. The main goal of this process

is to increase the effectiveness of the testing phase by identifying and running the

most critical tests earlier. This not only ensures that major defects are detected

sooner but also helps in better allocation of testing resources, especially under

tight deadlines or budget constraints. Prioritizing test cases can lead to significant

improvements in the quality of the software product, as it allows for timely

identification and resolution of defects that could have the greatest impact on user

satisfaction and system functionality.

Risk-Based Prioritization

Risk-based prioritization focuses on the likelihood and impact of potential defects.

Test cases that target features or components with the highest risk of failure or

those that could have the most severe consequences if they fail are executed first.

Example: Consider a financial application where the payment processing module

is critical. Test cases covering this module are prioritized higher due to the high

risk associated with payment failures.

Coverage-Based Prioritization

Coverage-based prioritization aims to maximize the coverage of the code,

requirements, or conditions as quickly as possible. This approach prioritizes test

cases that cover new or complex parts of the codebase or fulfil critical requirements

not covered by other tests.

Example: In a project introducing significant changes to the user interface, test

cases covering these UI components are given higher priority to ensure

comprehensive coverage of new functionalities.

Requirements-Based Prioritization

Requirements-based prioritization involves ordering test cases based on the

importance and criticality of the requirements they validate. This approach ensures

that features most valuable to the customer or end-user are tested first.

Example: For a mobile application, test cases verifying core functionalities such as

user login, profile management, and content viewing are prioritized over those

testing less critical features like customization options.

20
A4Q Practical Tester Syllabus | V1.0 2024

Dependency-Based Prioritization

Dependency-Based Prioritization is another crucial technique that recognizes the

interconnected nature of software components and the importance of testing these

dependencies in an efficient order. This approach focuses on the dependencies

among test cases, features, or system components, ensuring that test cases

covering foundational functionalities or those that other features depend upon are

executed first. Dependency-based prioritization is especially relevant in complex

systems where the functionality of one component may rely on the correct

operation of another.

The primary aim of dependency-based prioritization is to sequence test cases in a

manner that respects the logical and functional dependencies within the application

being tested. This approach helps in early detection of defects in critical

dependency paths, thereby preventing the cascading effect of defects across

interconnected components.

To illustrate Dependency-Based Prioritization with a practical example, let's

consider a simplified scenario involving an e-commerce application. This

application has several critical functionalities such as user registration, login,
product browsing, adding items to the cart, checkout, and payment processing.

Each of these functionalities has test cases associated with them, and there are

clear dependencies among these functionalities.

● Example: E-commerce Application Test Case Prioritization

Dependencies Overview:

- User Registration must occur before Login.

- Login is required before Product Browsing, Adding Items to the Cart, and

Checkout.

- Adding Items to the Cart precedes Checkout.

- Checkout is necessary before Payment Processing.

Given these dependencies, the test cases are prioritized and sequenced

as follows:

1. Test Case 1: User Registration

Priority: High

Reason: Fundamental for creating a new user account which is a

prerequisite for login and subsequent activities.

2. Test Case 2: User Login

Priority: High

21
A4Q Practical Tester Syllabus | V1.0 2024

Reason: A critical step that enables access to personalized features and

functionalities like browsing products and checking out.

3. Test Case 3: Product Browsing

Priority: Medium

Reason: Essential for user interaction with the platform, though it depends

on the user being logged in.

4. Test Case 4: Adding Items to the Cart

Priority: Medium

Reason: Directly dependent on Product Browsing; crucial for enabling

purchases.

5. Test Case 5: Checkout

Priority: High

Reason: A vital step in the purchasing process, requiring successful

addition of items to the cart.

6. Test Case 6: Payment Processing

Priority: High

Reason: The final step in the transaction process, dependent on successful

checkout.

Execution Order Based on Prioritization:

- Test Case 1: User Registration

- Test Case 2: User Login

- Test Case 3: Product Browsing

- Test Case 4: Adding Items to the Cart

- Test Case 5: Checkout

- Test Case 6: Payment Processing

This sequence ensures that the foundational functionalities are tested first,

respecting the logical flow of the application's operations. By adhering to the

dependencies, the testing process mirrors the end-user's journey through the

application, from account creation to completing a purchase, thereby maximizing

test efficiency and effectiveness.

● Example 2: Complex Abstract Scenario Overview

- Test Case X (TCX): Initialize Component

Priority: High

Dependency: None

Reason: Essential for setting up a critical component of the application,

serving as a prerequisite for multiple subsequent functionalities.

- Test Case Y (TCY): Verify Communication

Priority: Medium

Dependency: TCZ, TCX

22
A4Q Practical Tester Syllabus | V1.0 2024

Reason: Ensures that the component can communicate with external

services, depending on both the configuration and initialization.

- Test Case Z (TCZ): Configure External Services

Priority: High

Dependency: TCX

Reason: Critical for setting up external services that are crucial for the

application's operation, must occur after component initialization.

- Test Case W (TCW): Perform Secondary Function

Priority: Low

Dependency: TCY

Reason: Tests a less critical function that relies on successful

communication verification.

- Test Case V (TCV): Validate Final Output

Priority: High

Dependency: TCW, TCZ

Reason: Confirms the overall output of the application, relying on both the

secondary function and external services configuration.

Execution Order Based on Prioritization and Dependencies:

Given the complexities of dependencies and priorities, the execution order

diverges from the straightforward sequence, as follows:

1. Test Case X (TCX): Initialize Component

Starts the process due to its foundational role and high priority, with no

dependencies.

2. Test Case Z (TCZ): Configure External Services

Although it depends only on TCX, its high priority dictates early execution to

set up essential services.

3. Test Case Y (TCY): Verify Communication

Requires both TCX and TCZ to be completed, ensuring the component can

interact with the configured external services.

4. Test Case W (TCW): Perform Secondary Function

Comes after TCY, as it tests a function dependent on successful

communication, despite its lower priority

5. Test Case V (TCV): Validate Final Output. The last step, contingent upon the

outcomes of TCZ and TCW, is to ensure the application’s overall functionality

and output integrity.

This sequence exemplifies the nuanced approach needed in test case prioritization

and execution planning, where dependencies and priorities guide the order,

demonstrating the intricacies of managing complex testing scenarios effectively.

23
A4Q Practical Tester Syllabus | V1.0 2024

8. Acceptance Test-Driven Development (PO-6)

Acceptance Test-Driven Development (ATDD) is a collaborative approach to

software development where team members from various disciplines

(development, testing, and business stakeholders) define acceptance criteria and

create acceptance tests before any code is written. This methodology ensures that

all parties have a clear understanding of what needs to be done and what

constitutes a successful feature or functionality from the outset. ATDD facilitates

communication between developers, testers, and business representatives,

ensuring that software development aligns closely with business needs and

expectations.

● Example: Online Booking System Feature Implementation

Imagine a project to enhance an online booking system by adding a new feature

that allows users to cancel bookings more than 24 hours before the scheduled time

without incurring a penalty.

Acceptance Criteria:

- Users must be able to view their current bookings.

- Users can cancel a booking more than 24 hours before the scheduled time.

- Upon cancellation, the user receives a confirmation email.

- Cancellations made less than 24 hours before the scheduled time incur a

penalty fee.

Acceptance Tests:

- Test 1: Verify that users can view current bookings.

- Test 2: Confirm that a booking can be successfully canceled 25 hours

before the scheduled time without a penalty.

- Test 3: Check that a cancellation made 24 hours before the scheduled

time triggers a penalty fee.

- Test 4: Ensure that a confirmation email is sent to the user upon

successful cancellation.

Developing Acceptance Tests:

The development of these acceptance tests involves collaboration among team

members to ensure that the tests accurately reflect the acceptance criteria and

that all scenarios (both positive and negative) are covered. This collaborative effort

ensures that once the feature is implemented, it not only meets the technical

24
A4Q Practical Tester Syllabus | V1.0 2024

requirements but also fulfills the needs and expectations of the end-users and

stakeholders.

Behavior-Driven Development (BDD) complements Acceptance Test-Driven

Development (ATDD) by focusing on obtaining a clear understanding of desired

software behavior through discussion with stakeholders. BDD uses simple,

domain-specific language, allowing non-technical stakeholders to participate in the

definition of behavior and outcomes. This approach enhances ATDD by ensuring

that acceptance tests not only meet business requirements but also are

understandable by all parties involved. In doing so, BDD bridges the gap between

technical and non-technical team members, fostering better communication and a

shared understanding of the project goals.

BDD's emphasis on examples and scenarios as the primary means of specifying

requirements makes it an effective way to implement tests within an ATDD

framework. By describing behavior in terms of user actions and outcomes, BDD

facilitates the creation of acceptance criteria and tests that are directly aligned

with user needs and business objectives.

BDD Test Scenarios for Online Booking System Feature Implementation:

Here's how the acceptance criteria can be translated into BDD test scenarios using

the Given-When-Then format:

Scenario 1: Viewing current bookings.

Given I am a logged-in user

When I navigate to the "My Bookings" page

Then I should see a list of my current bookings

Scenario 2: Canceling a booking 25 hours before the scheduled time

without a penalty.

Given I have a booking scheduled more than 24 hours from now

When I cancel this booking

Then the cancellation should be successful

And I should not incur any penalty fee

Scenario 3: Canceling a booking 23 hours before the scheduled time

triggers a penalty fee.

Given I have a booking scheduled less than 24 hours from now

When I attempt to cancel this booking

25
A4Q Practical Tester Syllabus | V1.0 2024

Then the cancellation should be successful

And I should incur a penalty fee

Scenario 4: Receiving a confirmation email upon successful cancellation.

Given I have successfully cancelled a booking

When the cancellation process is completed

Then I should receive a confirmation email detailing the cancellation

These BDD scenarios provide a clear, narrative description of the feature's

behaviour from the user's perspective. They help ensure that all team members,

including developers, testers, and business stakeholders, have a shared

understanding of how the feature should work and what constitutes success for

each aspect of the functionality. This alignment is crucial for developing software

that meets users' needs and business goals, making BDD an invaluable component

of the ATDD process.

26
A4Q Practical Tester Syllabus | V1.0 2024

9. Preparing a Defect Report (PO-7)

The process of preparing a defect report is an integral aspect of software testing,

serving as the primary means of communicating issues found during testing to the

development team. A well-prepared defect report not only highlights the issue but

also provides comprehensive details to assist in its resolution. This chapter focuses

on the theoretical concepts behind effective defect reporting, accompanied by

practical examples to illustrate the application of these concepts in real-world

scenarios.

A defect report can contain one or more of the following concepts:

● Defect Identification: The initial step involves accurately identifying a

defect in the software. This requires a keen understanding of the

application's expected behaviour and the ability to recognize deviations

from this behaviour.

● Severity and Priority: Every defect report must classify the severity and

priority of the defect. Severity reflects the impact of the defect on the

application's functionality, while priority indicates the urgency with which

the defect needs to be addressed.

● Reproducibility: A key component of a defect report is the inclusion of

detailed steps to reproduce the defect. This ensures that developers can

see the defect in action and understand the specific conditions under which

it occurs.

● Expected vs. Actual Results: A clear description of what was expected

versus what actually occurred is essential for understanding the nature of

the defect.

● Environment Details: Providing details about the testing environment

(e.g., software versions, hardware specifications) is crucial, as it helps in

identifying whether the defect is environment specific.

● Evidence: Including evidence such as screenshots, logs, or videos can

significantly aid in the understanding and resolution of the defect.

Example 1: E-commerce Application Cart Issue

Defect Description: Items added to the cart are not being saved when users

navigate away from the page.

Severity: High, as it directly affects the shopping experience.

Priority: High, due to its impact on sales.

Steps to Reproduce:

1. Log into the user account.

2. Add items to the shopping cart.

3. Navigate to the homepage.

4. Return to the cart to find it empty.

27
A4Q Practical Tester Syllabus | V1.0 2024

Expected vs. Actual Results: Expected the cart to retain items when navigating

away and returning. However, the cart was found empty.

Environment Details: Tested on the web application version 2.1, Chrome browser

version 90, Windows 10.

Evidence: Screenshot of the empty cart after items were added.

Example 2: Mobile App Login Failure

Defect Description: Users are unable to log into the mobile application using valid

credentials.

Severity: Critical, as it prevents user access.

Priority: High, needs immediate attention.

Steps to Reproduce:

1. Open the mobile app.

2. Enter valid user credentials in the login form.

3. Click the login button to observe the failure.

Environment Details: Mobile app version 1.5, tested on an iPhone 12 running iOS

14.4.

Evidence: Video capturing the login attempt and failure.

Expected vs. Actual Results: Expected successful login with valid credentials;

instead, an error message was displayed, and login failed.

Through these examples, it becomes evident that a well-prepared defect report

is a detailed document that guides the development team in understanding,

reproducing, and ultimately resolving the identified issue. By adhering to the

concepts outlined in this chapter, testers can ensure that their defect reports

contribute effectively to the improvement of software quality.

28
A4Q Practical Tester Syllabus | V1.0 2024

10. Estimation Techniques (PO-8)

Estimation is a critical component in the realm of software testing, serving as a

cornerstone for planning, resource allocation, and timely delivery of projects. The

purpose of estimation techniques within the software testing lifecycle is to provide

test managers and teams with the ability to accurately forecast the time, effort,

and resources required to execute testing activities effectively. By mastering these

techniques, testing professionals can ensure that projects are completed within

budget, scope, and designated time frames, thereby enhancing the overall

efficiency and productivity of the testing process.

Three Point Estimation is a sophisticated estimation technique that has garnered

significant attention within the software testing community for its pragmatic

approach towards predicting the effort and duration of testing activities. This

technique, which finds its roots in the Project Evaluation and Review Technique

(PERT), offers a structured method for addressing the inherent uncertainty and

variability in project estimation tasks. It leverages three distinct estimate data

points to compute a more realistic estimation range:

- Optimistic (O)

- Most Likely (M)

- Pessimistic (P)

The final estimate (E) is their weighted arithmetic mean. In the most popular

version of this technique, the estimate is calculated as:

- E = (O + 4*M + P) / 6.

By acknowledging the best-case, worst-case, and most probable scenarios, Three

Point Estimation provides a comprehensive view of potential project outcomes,

enabling test managers and teams to plan with greater confidence and precision.

● Example 1: Estimation for Automated Regression Testing

Consider a scenario where a testing team needs to estimate the effort required

to implement automated regression testing for a new release of a software

application.

- Optimistic (O): 120 hours - assuming the existing test scripts require

minimal updates and integration into the test suite is straightforward.

- Most Likely (M): 200 hours - considering some scripts need moderate

revisions and additional test cases need to be written.

- Pessimistic (P): 320 hours - anticipating significant script overhauls and

complex integration challenges due to changes in application functionality.

29
A4Q Practical Tester Syllabus | V1.0 2024

Using the Three Point Estimation formula, the estimated effort (E) can be

calculated as:

● Example 2: Estimation for Performance Testing Cycle

In another scenario, a team is tasked with estimating the duration needed to

complete a comprehensive performance testing cycle, including test design,

execution, and analysis phases.

- Optimistic (O): 15 days - if existing performance benchmarks and tools can

be reused with minor adjustments.

- Most Likely (M): 25 days - assuming some benchmarks need updating and

new test scenarios are required for added features.

- Pessimistic (P): 40 days - in the case of substantial changes to the

application's architecture necessitating a complete overhaul of the

performance testing framework.

30
A4Q Practical Tester Syllabus | V1.0 2024

Applying the Three Point Estimation formula, the estimated duration (E)

is:

31
A4Q Practical Tester Syllabus | V1.0 2024

11. Application of Testing Techniques (PO-9)

The objective of PO-9 is to integrate the testing techniques that you have learned

from PO-1 through PO-8. This will equip you to comprehensively apply these

techniques simultaneously to a System Under Test (SUT), enhancing your ability

to uncover a wider array of defects and ensure system reliability.

In this practical objective, you are required to combine multiple testing techniques

that you have learned previously. Your goal will be to apply these techniques in a

coordinated manner to address complex testing scenarios, ensuring thorough

evaluation of the SUT.

We first make a list of the visited practical objectives as a reminder and

state when it is most effective to be used:

1. Equivalence Partitioning (PO-1):

● Description: This technique involves dividing input data into partitions

that are expected to exhibit similar behaviour. Thus, only one

representative value from each partition is tested.

● Effective When: It is most effective when you can categorize input data

into sets that should behave identically, reducing the number of test

cases needed while maintaining coverage.

2. Boundary Value Analysis (PO-2):

● Description: Focuses on the values at the edge of each equivalence

partition. Since errors are often found at the edges of input ranges, this

technique tests these boundary values.

● Effective When: It is used to identify errors at the boundaries between

partitions, which are common sites for bugs.

3. Decision Tables (PO-3):

● Description: This method is used for functions that respond to a

combination of inputs or events. It involves creating a table that covers

all possible combinations of conditions and the corresponding actions.

● Effective When: It’s especially useful when dealing with complex

business rules or logical relationships that affect application decisions.

4. State Transition (PO-4):

● Description: Tests the transitions between different states in an

application, using a state transition diagram to model the various states

and the triggers that result in transitions.

32
A4Q Practical Tester Syllabus | V1.0 2024

● Effective When: Best for applications where you need to verify proper

responses to sequences of events, especially in systems like login

processes or any state-based machine.

5. Test Case Prioritization (PO-5):

● Description: Involves ordering test cases so that those with the highest

impact or likelihood of finding defects are executed first.

● Effective When: Useful in reducing regression testing time or when

testing is under time constraints, ensuring critical functionalities are

tested first.

6. Acceptance Test-Driven Development (ATDD) (PO-6):

● Description: Involves team members from various disciplines

(development, testing, business stakeholders) defining acceptance

criteria and creating acceptance tests before development begins.

● Effective When: It’s highly effective in aligning development work with

business needs and ensuring all stakeholders have a clear understanding

of the requirements.

7. Prepare a Defect Report (PO-7):

● Description: This objective focuses on the skills required to accurately

and effectively report defects found during testing.

● Effective When: Essential for ensuring defects are communicated to

development teams in a way that expedites fixes, enhancing the quality

and reliability of the application.

8. Estimation Techniques (PO-8):

● Description: Techniques used to estimate the required effort and

resources for testing activities.

● Effective When: Critical for planning and resource allocation, helping to

manage time and expectations throughout the testing lifecycle.

In the Selection of Techniques section, you are guided on the critical process of

determining which testing techniques are most suited to the specific aspects of the

System Under Test (SUT). This process is fundamental because the effectiveness

of the testing efforts largely depends on the appropriateness of the methods

applied to different testing scenarios.

During this stage, you, as a tester, must carefully analyse the characteristics and

requirements of the SUT. Start by reviewing the functionality, complexity, and the

types of user interactions it supports. Consider the domains of application, such as

financial, healthcare, or consumer software, as different domains might favour

certain testing techniques due to regulatory or typical use case scenarios.

33
A4Q Practical Tester Syllabus | V1.0 2024

The next step involves correlating the identified characteristics of the SUT with the

strengths of various testing techniques. For example, if the application involves

complex business rules with multiple conditions influencing the outcome, Decision

Tables are particularly effective. They allow you to visualize and test all possible

combinations of inputs and their associated outputs, ensuring that all logical

branches are verified.

If the SUT is a web-based application with a variety of user inputs, techniques like

Equivalence Partitioning and Boundary Value Analysis can be highly beneficial.

These techniques help in efficiently managing the test cases by focusing on the

most representative values and critical boundary conditions, reducing the total

number of tests while still maintaining effective coverage.

In systems that involve sequences of events or state changes—such as login

processes, session managements, or any kind of workflow where the outcome

depends on the previous states—State Transition testing becomes invaluable. It

ensures that all possible states and transitions are considered and tested, helping

uncover defects that could occur during state changes.

For projects where time constraints are a significant concern, Test Case

Prioritization is crucial. By identifying and executing tests that cover the most

critical functionalities first or have a higher likelihood of finding significant defects,

you can optimize your testing efforts under limited time conditions.

This selection process requires a deep understanding of both the system under

test and the available testing techniques. By selecting the most appropriate

techniques, you ensure that your testing is not only thorough but also efficient,

maximizing the chances of uncovering significant defects before the system is

deployed or delivered. As you progress through this objective, you will also develop

the skill to adapt and combine these techniques creatively to suit unique testing

scenarios, thereby becoming a more effective and versatile tester.

Let's consider an end-to-end example using a hypothetical online banking system,

which we'll use to demonstrate how to apply and combine multiple testing

techniques from various practical objectives (POs) to create effective test cases.

34
A4Q Practical Tester Syllabus | V1.0 2024

System Under Test (SUT) Description: Online Banking System

Functionality Overview:

● User Authentication: Allows users to log in with a username and password.

● Account Management: Users can view their account balance, recent

transactions, and manage account settings.

● Funds Transfer: Users can transfer funds between their own accounts or to

other users' accounts within the same bank.

● Bill Payments: Users can pay bills directly from their accounts to registered

payees.

User Types:

● Regular User: Has access to basic functionalities like viewing account details

and transferring funds.

● Admin User: In addition to regular user capabilities, can manage user

accounts and adjust system settings.

Special Features:

● Multi-Factor Authentication (MFA): Required for completing financial

transactions.

● Transaction Limits: There are daily and transactional limits based on account

type and user settings.

Example: Combining Multiple POs to Create Test Cases

Step 1: Review of Testing Techniques

● We start by reviewing techniques such as Equivalence Partitioning,

Boundary Value Analysis, Decision Table Testing, State Transition, and Test

Case Prioritization from PO-1 to PO-8.

Step 2: Selection of Techniques

● Equivalence Partitioning: Useful for testing login functionality by partitioning

input data into valid and invalid credentials.

● Boundary Value Analysis: Effective for testing the edge cases of transaction

limits.

● Decision Table Testing: Ideal for testing the various combinations of account

settings and transaction types.

● State Transition: Crucial for testing the changes in account state after

several transaction attempts, both failed and successful.

Step 3: Development of Integrated Test Cases

● Test Case 1: Login Functionality

35
A4Q Practical Tester Syllabus | V1.0 2024

● Use Equivalence Partitioning to create test cases for different user

types with valid and invalid input scenarios.

● Apply Boundary Value Analysis to test the response to minimal and

maximal input lengths for username and password.

● Test Case 2: Funds Transfer

● Use Decision Table Testing to assess different transfer scenarios:

within the user’s accounts, to external accounts, with or without

exceeding daily limits.

● State Transition testing to verify account state after successful and

unsuccessful transfers, including testing the MFA step.

● Test Case 3: Bill Payments

● Combination of Equivalence Partitioning (for different payee

accounts) and Boundary Value Analysis (for amount fields near upper

and lower limits).

Step 4: Implementation of Test Scenarios

● Execute the designed test cases, focusing on integration points between

functionalities such as the link between login and transaction authorization.

This approach demonstrates how multiple testing techniques can be integrated to

thoroughly test complex systems like online banking. By using a variety of

methods, testers can ensure that different aspects of the system are adequately

tested, thereby enhancing the software's reliability and security. This scenario not

only highlights the depth of testing required in modern applications but also the

need for a strategic approach to combine different testing techniques effectively.

36
A4Q Practical Tester Syllabus | V1.0 2024

12. Create a Test Plan (PO-10)

The primary objective of this practical objective (PO-10) is to master the creation

of a standard test plan according to IEEE 29119-3:2021. This includes

understanding the components of a test plan, knowing how to define the scope

and objectives of testing, and being able to allocate resources effectively.

Creating a test plan is a crucial aspect of the software testing process. A well-

structured test plan, aligned with IEEE 29119-3:2021 standards, outlines the

strategy, scope, resources, schedule, and activities required to perform testing. It

serves as a blueprint to ensure that testing is systematic and comprehensive,

covering all necessary aspects to deliver a quality product.

Components of a Standard Test Plan (IEEE 29119-3:2021)

A comprehensive test plan typically includes the following sections:

Required Items:

1. Introduction: An introduction is essential to provide context and purpose

for the test plan.

2. Test Plan Overview: This section should outline the objectives, scope,

and key details of the testing effort.

3. Test Items: Identifying what software components or features will be

tested is crucial.

4. Test Deliverables: It's essential to specify what test-related documents

will be produced during testing.

5. Testing Strategy: A clear testing strategy that includes test levels, types,

and environments is vital.

6. Test Schedule: A timeline for testing activities and milestones is typically

required.

7. Resource Requirements: Identifying the necessary resources for

testing, including personnel, tools, and infrastructure, is essential.

8. Entry and Exit Criteria: Defining when testing can begin, proceed, and

conclude is a key part of planning.

Optional Items:

1. Features to Be Tested and Features Not to Be Tested: While it's

beneficial to specify what will and won't be tested, the level of detail may

vary.

2. Reference Documents: Depending on the project, referencing external

documents may or may not be necessary.

37
A4Q Practical Tester Syllabus | V1.0 2024

3. Test Risks and Contingencies: The extent to which risks are

documented can vary based on the project's complexity.

4. Test Execution and Reporting: While procedures for executing tests

and reporting results are important, the level of detail may vary.

5. Approvals and Sign-Off: The process for approvals and sign-off may

vary based on organizational procedures.

6. Appendices: Additional supporting information, such as a glossary or

acronyms, may or may not be included.

7. Change History: Maintaining a change history is good practice but may

not be required for all projects.

The test plan evolves over time:

1. Initiation: The test plan is initiated during project planning.

2. Development: The plan is developed with inputs from stakeholders.

3. Review: The plan is reviewed and approved before testing begins.

4. Execution: Testing activities are carried out according to the plan.

5. Monitoring: The plan is continuously monitored and updated as needed.

6. Closure: The plan is closed after successful testing and documentation.

Creating a comprehensive test plan offers several advantages:

• Clarity: Provides a clear roadmap for testing activities, reducing

ambiguity.

• Efficiency: Prevents redundant efforts and focuses testing on critical

areas.

• Risk Management: Identifies potential risks and outlines strategies to

mitigate them.

• Communication: Ensures all stakeholders understand the testing process

and expectations.

Example Test Plan on the To-Do List Application

The To-Do List Application is designed to help users efficiently manage their tasks

through a user-friendly interface. Upon launching the app, users can easily register

with a unique username and password, ensuring secure access to their personal

task list. Once registered, users can log in using their credentials.

The core functionality of the application revolves around comprehensive task

management. Users can create new tasks by providing a title and description, edit

38
A4Q Practical Tester Syllabus | V1.0 2024

existing tasks to update details, and delete tasks that are no longer needed.

Additionally, the application allows users to mark tasks as completed, helping them

track their progress.

Task viewing is another critical aspect of the application. Users can view a

consolidated list of all their tasks, with the ability to filter tasks based on their

status, such as completed or pending. This feature ensures that users can prioritize

their workload and focus on what matters most. The To-Do List Application aims

to streamline task management, making it easier for users to stay organized and

productive.

Requirements for the To-Do List Application

1. User Registration and Login:

o Users must be able to register with a username and password.

o Users must be able to log in with their credentials.

2. Task Management:

o Users must be able to create a new task with a title and description.

o Users must be able to edit an existing task.

o Users must be able to delete a task.

o Users must be able to mark a task as completed.

3. Task Viewing:

o Users must be able to view a list of all tasks.

o Users must be able to filter tasks by status (e.g., completed,

pending).

Example Test Plan for the To-Do List Application

1. Introduction

The purpose of this test plan is to outline the testing strategy for the To-Do List

application, ensuring all functionalities work as expected.

2. Test Plan Overview

Objectives: Verify that all features of the To-Do List application meet the specified

requirements and function correctly. Scope: Includes user registration, login, task

management, and task viewing functionalities. Key Details: Testing will cover

functional and non-functional requirements, using both manual and automated

testing methods.

3. Test Items

• User Registration and Login

• Task Management

39
A4Q Practical Tester Syllabus | V1.0 2024

• Task Viewing

4. Test Deliverables

• Test cases

• Test scripts (for automated tests)

• Test execution reports

• Defect reports

5. Testing Strategy

Test Levels: Unit testing, integration testing, system testing, and user acceptance

testing.

Test Types: Functional testing, Non-Functional testing.

Test Environments: Testing will be conducted in a development environment, a

staging environment, and finally, in a production-like environment.

6. Test Schedule

• Week 1: Prepare test cases and test scripts.

• Week 2: Conduct unit testing and integration testing.

• Week 3: Conduct system testing.

• Week 4: Conduct user acceptance testing and prepare final test report.

7. Resource Requirements

• Testers: 2

• Developer support: 1

• Test environment: Staging server with the application deployed

• Tools: Selenium (for automated testing), JIRA (for defect tracking)

8. Entry and Exit Criteria

Entry Criteria:

• Application features are developed, and unit tested by developers.

• Test environment is set up and ready.

Exit Criteria:

• All critical and major defects are resolved.

• All test cases are executed and passed.

• User acceptance testing is signed off by stakeholders.

40
A4Q Practical Tester Syllabus | V1.0 2024

Optional Items

Features to Be Tested and Features Not to Be Tested

Features to Be Tested:

• User registration and login

• Task creation, editing, deletion, and completion

• Task viewing and filtering

Features Not to Be Tested:

• Non-functional aspects like scalability (considered out of scope for this

simple application).

Reference Documents

• Requirement specification document

Test Risks and Contingencies

• Risk: Unavailability of the staging server.

o Contingency: Use local development environment for initial tests.

Test Execution and Reporting

Execution:

• Manual tests will be executed for all test cases.

• Automated tests will be executed for regression testing.

Reporting:

• Daily status reports will be shared with the team.

• A final test report will be prepared at the end of the testing phase.

Approvals and Sign-Off

• The test plan and results will be reviewed and approved by the project

manager and stakeholders.

Appendices

• Glossary of terms

• List of test cases and scripts

Change History

• Version 1.0: Initial test plan created.

• Version 1.1: Updated with additional test cases based on feedback.

This example provides a structured test plan for the To-Do List application.

41
A4Q Practical Tester Syllabus | V1.0 2024

13. Business outcomes

Upon completing the A4Q Practical Tester training of the syllabus, participants will

be equipped to deliver significant value to their teams and projects. These

outcomes not only enhance individual performance but also contribute to the

organization's broader goals of quality, efficiency, and innovation. The specific

business outcomes include:

1. Enhanced Testing Efficiency and Effectiveness:

Streamlined Testing Processes: Participants will learn to apply testing techniques

such as Equivalence Partitioning and Boundary Value Analysis, leading to more

efficient test case creation and execution. This results in a better allocation of

testing resources and more thorough test coverage.

Optimized Test Case Design: Understanding and applying concepts like Decision

Tables and State Transition testing allow for the creation of comprehensive and

effective test cases, reducing the likelihood of defects slipping through to later

stages.

2. Improved Product Quality and Timeliness:

Early Defect Detection: Through strategies such as Test Case Prioritization and

Acceptance Test-Driven Development (ATDD), testers will be able to identify and

address high-priority issues early in the development lifecycle, significantly

reducing time-to-market.

Enhanced Product Stability: By employing systematic testing approaches and

focusing on critical areas of functionality, testers contribute to developing more

stable and reliable software products that meet user needs and expectations.

3. Enhanced Collaboration and Communication:

Improved Stakeholder Engagement: The ATDD approach builds better

collaboration among developers, testers, and business stakeholders, ensuring that

development efforts align closely with user acceptance criteria and business

objectives.

Effective Defect Reporting: Learning to prepare clear, comprehensive defect

reports enables testers to communicate defect effectively with development

teams, facilitating quicker resolution and contributing to the overall quality of the

product.

4. Cost Reduction and Risk Mitigation:

42
A4Q Practical Tester Syllabus | V1.0 2024

Reduced Rework and Costs: By adopting efficient testing techniques and

prioritizing test cases based on risk, organizations can significantly reduce the cost

associated with rework and ensure that testing efforts focus on the most impactful

areas.

Better Risk Management: Through the application of systematic testing processes,

testers are better equipped to identify potential risks early, allowing for more

effective mitigation strategies and reducing the likelihood of project delays or

failures.

5. Continuous Learning and Improvement:

Adaptability to New Technologies: The A4Q practical tester emphasizes the

importance of continuous learning and adaptation, preparing testers to stay

abreast of new technologies and methodologies. This ensures that they can

continually contribute to the improvement of testing practices within their

organizations.

Professional Development: Completing this syllabus training enhances testers'

skills and knowledge, positioning them for career advancement and leadership

roles within their teams and the broader software testing community.

By achieving these business outcomes, participants will not only advance their own

careers but also contribute significantly to the success of their organizations by

delivering high-quality software products efficiently and effectively.

43
A4Q Practical Tester Syllabus | V1.0 2024

14. A4Q Practical Tester application

URL: www.aiexam.online

The "A4Q Practical Tester" application is a dynamic tool designed to facilitate

practical application of theoretical software testing concepts. It serves as a

platform to experience and practice in hands-on practical questions, helping

participants to translate theoretical knowledge into actionable testing strategies.

Key features and functionalities include:

1. Interactive Learning Environment:

● The application provides an interactive learning environment to actively

engage with theoretical concepts in a practical setting.

2. Alignment with Practical Objectives:

● The exercises in the application are designed to align with the A4Q

practical tester practical objectives mentioned in the syllabus. Each

exercise focuses on specific concepts, ensuring a targeted approach to

developing skills.

3. Guided Practice Sessions:

● Learners have access to guided practice sessions that walk them through

the process of applying theoretical concepts in testing scenarios.

4. Instant Feedback Mechanism:

● The application incorporates an instant feedback mechanism that

provides learners with immediate insight into their performance. This

enables learners to identify areas of strength and areas for improvement

in real time, AI powered evaluation.

5. Progress Tracking and Performance Metrics:

● Learners can track their progress and performance within the

application, allowing them to monitor their development of skills over

time. Performance metrics provide valuable insights into proficiency

levels and areas requiring further attention.

6. Customizable Learning Paths:

● The application offers customizable learning paths tailored to individual

learning needs and preferences. Learners can choose exercises based on

their proficiency level, interests, and specific areas of focus.

The 'Practical Tester' application is a central element of our offering, distinguishing

our product by enhancing and elevating the learning experience. It directly applies

the concepts of software testing, allowing you to develop your skills through its

advanced features and functionalities.

http://www.aiexam.online/

